Following Design Standards from a Manufacturing Perspective

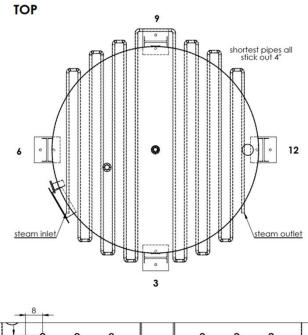
OR, how do we make sure tanks are up to the standards?

About me

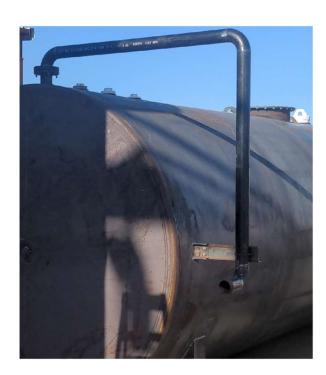
- Worked as a welder on tanks and accessories as a teenager
- Graduated from Cal Poly SLO, B.S. Civil Engineering
- Practiced as a Surveyor and City Engineer
- Practiced as a Structural Engineer for 12+ years
- P.E. in Civil Engineering
- 3rd generation owner of a steel tank manufacturing company

About my company

- 80+ years in business
- Mostly serving the California agricultural community
- For the sake of this discussion, we manufacture UL-142 and UL-2085
 Fireguard® AST tanks.

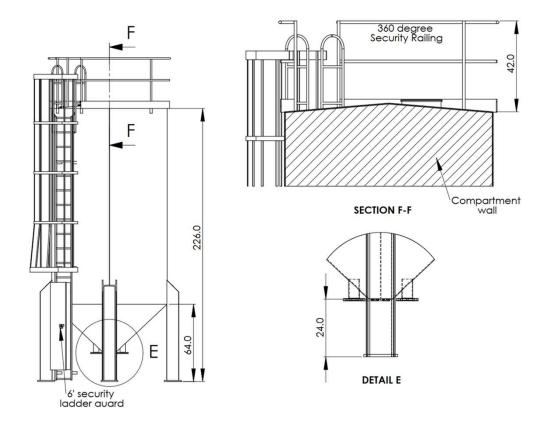


Questions I want to try and answer today


- What part of a tank assembly actually falls under UL AST manufacturing guidelines?
- How do manufacturers of UL AST tanks ensure code compliance?

Which parts of a tank constitute a "tank" per UL?

Short answer; If it's welded to the tank, it's part of the tank, with a few exceptions



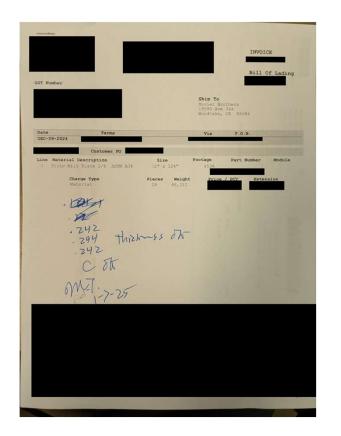
The Primary Exceptions - Ladders and Guardrails

Bolted Ladders
ARE
in the standards

Other exceptions to the "welded to the tank" rule

Manhole lids Labels

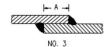
Conclusion to Part 1

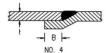

How does the manufacturer ensure code compliance?

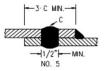
Short answer; They are either meticulous in their methods, or else they choose not to comply.

Let's walk through the fabrication process to see how it's done.

		mia Steel Industries San Bernardino Av ne. California, USA 09/350-6300 Email General (92335 cal sales@nuci Order Informat	Mill Tes	t Report	Purchase Order Shipment Number Certificate Deliver, Sales Order Prod. Order Numb	y No.	
End Use Thickness: Width: 72 Length:	I.R. Sheet Proce WAREHOUSE 5 0.2400 IN 0000 IN Edg	ssed Coll (ME) ITOCK MIN s: Mill		Oil: Finish: Coating Weight Chein Treat: U.S. Meil Requir ROHS Compiler	red : No	Truck / RR ID Issued Date Generated On Attention Page 01 of 01		
"TEST RE	PORTS TO SHO	W WEIGHTS "				FULY		
Freq Orient Loc Gauge Len. (ir Yeld Method In Blar Strain N-Value Strain N-Value Strain Coopers	Temple HTLOT THANS ID 8 2000 0.5% EUL	RMANCE WITH AS	Bend	Testing Parame	27053	VIOLITI	Charpy R N Ca	
Heat Coll	Loc	Tensile Kel Kg 474 667 444 675	0.607 0.01	Mechanical Testin Tenate Testin Ty	g Hesuits		B N Ca 2000 CODD GROOT	Hardress CO Value
Heat Col	Loc	Test Teste Ke Ke	5 0.607 0.01	Mechanical Testin	g Results	900 8,990 0,001 0	Bond Loc Result	Loc Value
Heat Col	Loc	Tend Terralie No. 2 Spc. 3 Spc. 2 Spc. 3	Elong Soc 1 5	Mechanical Tersin Topics Type 157 157 157	2 Heiuts Aug D	Ha-R N-Value Expension in Sec. 3 Ava	Bond Loc Result	Loc Value

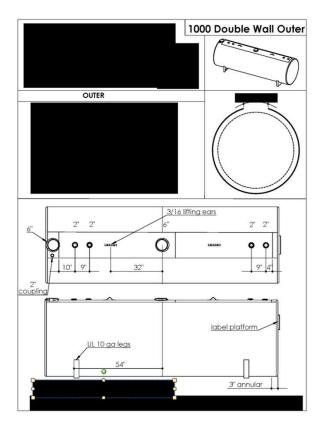

Figure 6.1 Shell joints


Double-welded U, V, bevel, or square groove butt joint.


Full penetration and complete fusion.

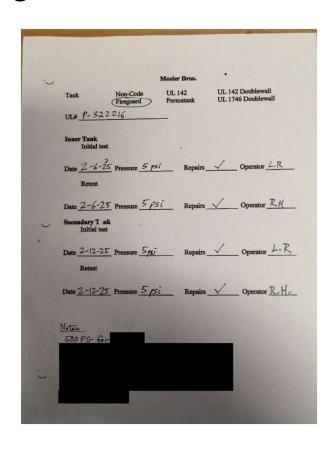
Double-welded full fillet lap joint, or single-welded tull fillet lap joint on outside with 1-inch (25.4-mm) intermittent weld spaced not over 12 inches (0.3 m) on inside; minimum overlap, "A" – 1/2 inch (12.7 mm) for tank diameters 48 inches (1.2 m) or less, 3/4 inch (19.1 mm) for tank diameters over 48 inches (1.2 m).

Groove weld equivalent in thickness to "t"; full penetration and complete fusion; minimum overlap, "B" - 1/2 inch (12.7 mm).


Full fillet weld on outside; "C" is 1/2 inch (12.7 mm) minimum diameter lock weld spaced not over 12 inches.

Single-welded full fillet lap joint; minimum overlap, "A" – 1/2 inch (12.7 mm) for tank diameters 48 inches (1.2 m) or less, 3/4 inch (19.1 mm) for dank diameters over 48 inches (1.2 m). This joint shall not be used on tanks with a diameter greater than 65 inches (1.65 m) unless it is used on the shell of the secondary containment shell is in direct contact with the primary tank.

Quality Control and Custom Work



Leak Testing - How do we know it's been done?

Testing...

