

Hazardous Waste Sampling & Interpreting Lab Results

Arleen Gurfield, Supervising EHS – San Diego County CUPA M-B1 February 26, 2024

Question 1:

Where are you from?

Course Objectives

- 01. **WHAT to Sample**
- WHEN to Sample 02.
- WHICH tests to request 03.
- **INTERPRETING** the 04.
 - Sample Results
- **NOW WHAT?** 05.

Question 2:

Why do we need to sample?

Waste Determination

01. Is it a WASTE?

02. Is it a HAZARDOUS WASTE?

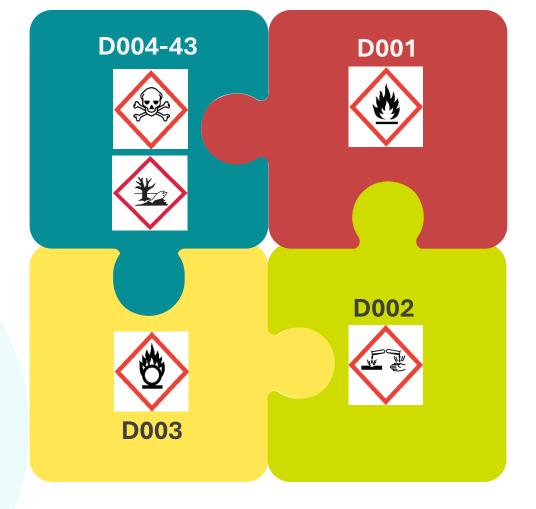
03. Is it LISTED or CHARACTERISTIC?

04. Is it EXEMPTED or EXCLUDED?

Who is responsible for making the Determination? How can they make a Waste Determination?

Hazardous Waste CHARACTERISTICS

Test Methods - SW-846


Toxic

RCRA: TCLP

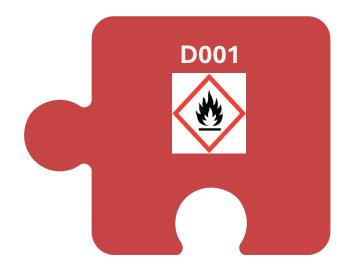
Non-RCRA: TTLC, STLC, Definitive Fish Bioassay, Oral, Dermal, or Inhalation

Reactive

RCRA: Cyanides and Sulfides

Ignitable

Flashpoint <140°F


Corrosive

pH ≤2 or ≥12.5

Liquids are RCRA

Solids are Non-RCRA (CA)

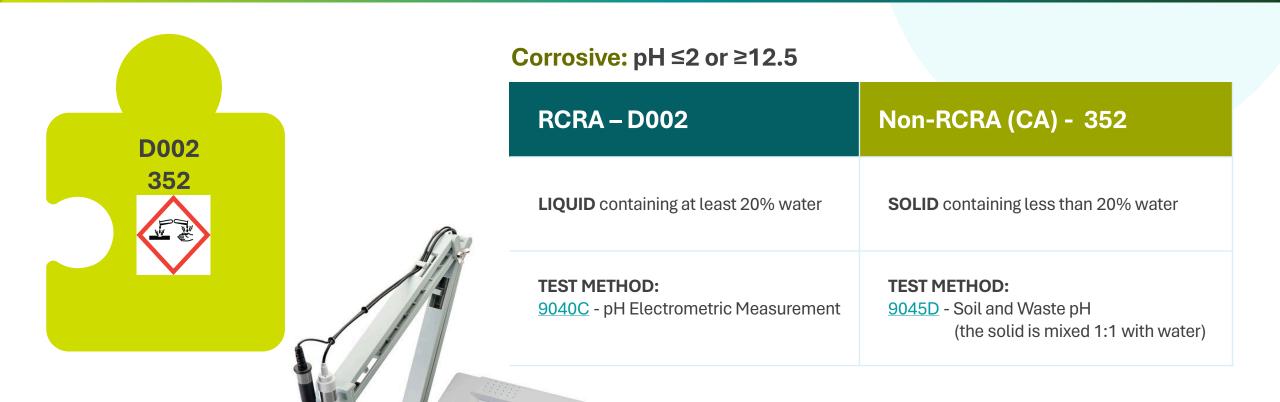
IGNITABILITY

Ignitable: Liquid (other than <24% alcohol) with a Flashpoint <140°F

-or-

 A non-liquid under standard temperature and pressure (STP), is capable of causing fire through friction, absorption of moisture or spontaneous chemical changes and, when ignited, burns so vigorously and persistently that it creates a hazard. Nonliquids are more difficult to test.

Ignitable compressed gas


Oxidizer

California uses the same definition and test method as Federal

TEST METHOD: <u>1010A</u> (ASTM D93) -

Pensky-Martens Closed Cup Method

CORROSIVITY

REACTIVITY

TEST METHODS:

9010C – **Cyanides**

9030B - Sulfides

Reactive: a solid waste with any of the following properties:

- (1) It is **normally unstable** and readily undergoes violent change without detonating.
- (2) It reacts violently with water.
- (3) It forms potentially **explosive mixtures** with water.
- (4) When mixed with water, it **generates toxic gases, vapors or fumes** in a quantity sufficient to present a danger to human health or the environment.
- (5) It is a **cyanide or sulfide bearing waste** which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment.
- (6) It is **capable of detonation or explosive reaction** if it is subjected to a *strong initiating source* or if heated under confinement.
- (7) It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.
- (8) It is a **forbidden explosive** as defined in 49 CFR 173.54, or is a Division 1.1, 1.2 or 1.3 explosive as defined in 49 CFR 173.50 and 173.53.

Question 3:

How many tests are there for toxicity?

TOXICITY

RCRA (D004-43)

TEST METHOD:

<u>1311</u> – Toxicity Characteristic Leaching Procedure (TCLP)

The TCLP is designed to determine the mobility of *both organic and inorganic* analytes present in liquid, solid, and multiphasic wastes.

Tests for 8 metals and 14 organic chemicals.

Non-RCRA (CA)

TEST METHODS for INORGANICS:

<u>6010B</u> - Inductively Coupled Plasma-Atomic Emission Spectrometry (aka CAM17)

7470A/1B – Mercury Cold-Vapor Technique

300.1 - Fluoride Salts

TEST METHODS for ORGANICS:

8260B - Volatile Organic Compounds by GC/MS

8270C - Semivolatile Organic Compounds by GC/MS

8082A - Polychlorinated Biphenyls (PCBs) by GC

8082B - Dioxins and Dibenzofurans by GC/MS

8015M - Diesel, Gasoline, and Kerosene Range organics

Results from these test are used to determine if the sample exceeds:

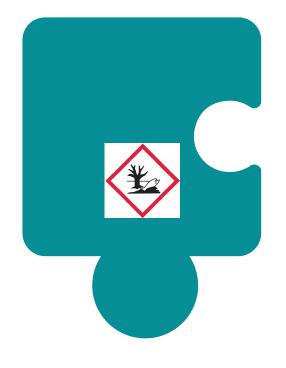
Total Threshold Limit Concentration (TTLC) or Soluble Threshold Limit Concentration (STLC)

RCRA: TCLP

8 metals (D004-011) 6 pesticides (D012-017) 26 organic chemicals (D018-043)

Substance	20x rule	TCLP (mg/L)
7.		24
Arsenic (D004)	100	5
Barium [†] (D005)	2,000	100
Cadmium (D006)	20	1
Chromium VI (D007)	100	5
Lead (D008)	100	5
Mercury (D009)	4	0.2
Selenium (D010)	20	1
Silver (D011)	100	5
METHOD:	=	1311 / 6010B
Benzene (D018)	10	0.5
Carbon Tetrachloride (D019)	10	0.5
Chlorobenzene (D021)	2,000	100.0
Chloroform (D022)	120	6.0
1,4-Dichlorobenzene (D027)	150	7.5
1,2-Dichloroethane (D028)	10	0.5
1,1-Dichloroethene (D029)	14	0.7
Hexachlorobutadiene (D033)	10	0.5
Hexachloroethane (D034)	60	3.0
Nitrobenzene (D036)	40	2.0
Pyridine (D038)	100	5.0
Tetrachloroethylene (D039)	14	0.7
Trichloroethylene (D040)	10	0.5
Vinyl Chloride (D043)	4	0.2
METHOD:		1311 / 8260B

CA: TTLC / STLC

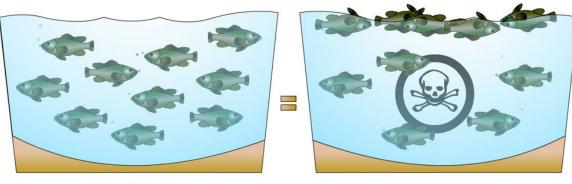


ORGANICS

INORGANICS

Trichloroethylene	2,040	204	2,040	Substance	10x rule	STLC (mg/L)	TTLC (mg/Kg)
METHOD:	2 1	WET / 8260B	8260B			921	
				Antimony	150	15	500
Aldrin	1	0.14	1.4	Arsenic	50	5	500
Chlordane	3	0.25	2.5	Barium [†]	1,000	100	10,000
DDT, DDE, DDD	1	0.1	1	Beryllium	8	0.75	75
Dieldrin	8	0.8	8	Cadmium	10	1	100
Endrin	0	0.02	0.2	Chromium VI	50	5	500
Heptachlor	5	0.47	4.7	Chromium, total	50	5 (560) [‡]	2,500
Kepone	21	2.1	21	Cobalt	800	80	8,000
Methoxychlor	100	10	100	Copper	250	25	2,500
Mirex	21	2.1	21	Lead	50	5	1,000
\$0.4.40.0000,000,000		1.7	17	Molybdenum ^{††}	3,500	350	3,500
Pentachlorophenol	17	- PRINCES	5	Nickel	200	20	2,000
Toxaphene	5	0.5	176	Selenium	10	1	100
METHOD:	-	WET / 8270C	8270C	Silver	50	5	500
				Thallium	70	7	700
PCB	50	5	50	Vanadium	240	24	2,400
METHOD:	- 8	WET / 8082	8082	Zinc	2,500	250	5,000
consideration of the control of the second o				METHOD:		WET / 6010B	6010B
Dioxin	0	0.001	0.01	_ Mercury	2	0.2	20
METHOD:	12	WET / 8280A	8280A	METHOD:		WET / 7470A/1B	7470A/1B
					1.000	I 100	10.000
				Fluoride salts	1,800	180	18,000
				METHOD:	. =	WET / 300.1	300.1
							10

CA: TOXICITY



Non-RCRA (CA)

ADDITIONAL TEST METHODS:

Acute Oral LD_{50} (rat): <2,500 mg/kg Acute Dermal LD_{50} (rabbit): <4,300 mg/kg Acute Inhalation LC_{50} (rat): <10,000 ppm Acute Aquatic 96-hour LC_{50} : <500 mg/L

- Oncorhynchus mykiss (rainbow trout)
- Pimephales promelas (fathead minnow)
- Notemigonus crysoleucas (golden shiner)

LC₅₀ < 500 mg/l

Acute Aquatic Toxicity

What questions might you ask?

GHS Pictograms

Health Hazard Flame **Exclamation Mark** Flammables · Irritant (skin and eye) Carcinogen Pyrophorics Skin Sensitizer Mutagenicity · Acute Toxicity (harmful) Reproductive Toxicity Self-Heating Emits Flammable Gas Narcotic Effects Respiratory Sensitizer Target Organ Toxicity Self-Reactives Respiratory Tract Irritant Aspiration Toxicity · Organic Peroxides Hazardous to Ozone Layer (Non Mandatory) Corrosion **Exploding Bomb** Gas Cylinder Gases Under Pressure Skin Corrosion/Burns Explosives Eve Damage · Self-Reactives Corrosive to Metals Organic Peroxides Flame Over Circle Skull and Crossbones Environment (Non Mandatory)

Oxidizers

Aquatic Toxicity

· Acute Toxicity (fatal or toxic)

Need more details? Refer to the Safety Data Sheets

Fixative - SDS

(2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

SAFETY DATA SHEET

Diff Quik® Set

DS # :

duhm0006

Section 1. Identification

Product identifier : Diff Quik® Set

Product code : 130832, B4132-1A, 10445586, 10459382

Product type : Liquid.

Relevant identified uses of the substance or mixture and uses advised against

Not applicable.

Manufacturer : Medion Grifols Diagnostics AG

Bonnstrasse 9 CH-3186 Düdingen Switzerland Tel.: (+41) 26 492 8702

Fax: (+41) 26 492 8656

Siemens Healthcare Diagnostics Inc.
 511 Benedict Avenue

Tarrytown, NY 10591-5097 USA

1-877-229-3711

(800) 424-9300 (CHEMTREC) (24/365)

Section 2. Hazards identification

OSHA/HCS status :

Diff Quik Fixative Solution

Diff-Quik Solution I

Standard (20 CFR 1910.1200).
While this material is not considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200), this SDS contains valuable information critical to the safe handling and proper use of the product. This SDS should be retained and available for employees and other users of this product. While this material is not considered

This material is considered hazardous by the OSHA Hazard Communication

Diff-Quik Solution II

hazardous by the OSHA Hazard Communication Standard (20 FCR 1910. 1200), this SDS contains valuable information critical to the safe handling and proper use of the product. This SDS should be retained and available for employees

and other users of this product.
FLAMMABLE LIQUIDS - Category 2
ACUTE TOXICITY (inhalation) - Category 3

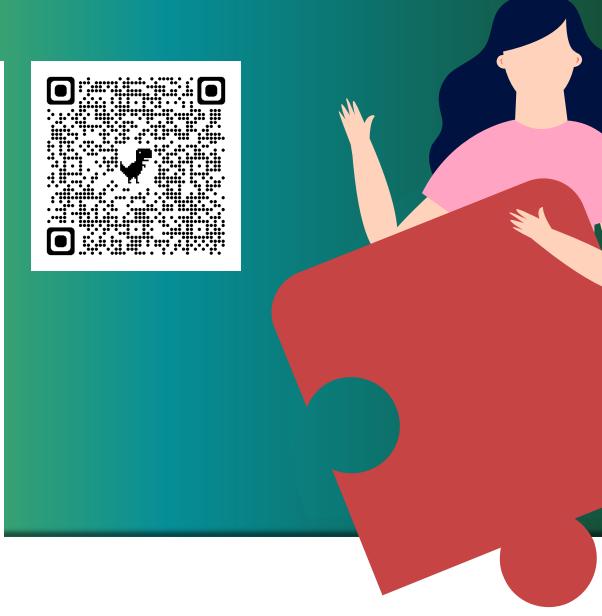
Diff-Quik Solution I

: Diff Quik Fixative Solution

SPECIFIC TARGET ORGAN TOXICITY
(SINGLE EXPOSURE) - Category 1
Not classified.

Diff-Quik Solution II

ditional information : Not available.


Not available.

GHS label elements

Classification of the

substance or mixture

Date of issue/Date of revision : 5/12/2017 Date of previous issue : 1/22/2016 Version : 1.05 1/19

Eosin Y - SDS

ThermoFisher SCIENTIFIC

SAFETY DATA SHEET

Creation Date 26-Sep-2009

Revision Date 24-Dec-2021

Revision Number 5

1. Identification

Eosin Y, Alcoholic 0.25% Solution Product Name

SE22-500D Cat No.:

Eosin yellow solution, alcoholic

Laboratory chemicals.

Food, drug, pesticide or biocidal product use. Uses advised against

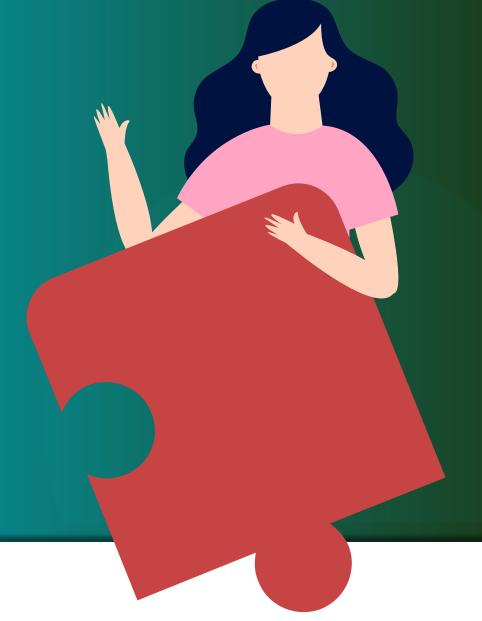
Details of the supplier of the safety data sheet

Company Fisher Scientific Company One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification


Classification
This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Category 2 Serious Eye Damage/Eye Irritation Category 2 Specific target organ toxicity (single exposure)
Target Organs - Optic nerve, Central nervous system (CNS).

Label Elements

Signal Word

Highly flammable liquid and vapor Causes serious eye irritation May cause damage to organs

Page 1/10

Thiazin - SDS

Hematology Reagent B: Thiazin Stain

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 1: Identification

Product name : Hematology Reagent B: Thiazin Stain

: SS-071B, SS-071B-EU, or SS-171B2 diluted with methanol

Use of the substance/mixture : Hematology Pro staining reagent

Details of the supplier of the safety data sheet

Logan, UT 84321 - USA

T+1 (435) 752-6011 - F+1 (435) 752-4127 qara_ebs@elitechgroup.com - www.elitechgroup.com

1.4. Emergency telephone number

Contact your distributor or poison control center in your country. Emergency number

InfoTrac Emergency Response: Calls within the USA, phone: 1-800-535-5053. Calls outside the USA, phone: +1.352-323-3000 (call collect) Customer ID: #90104 (NOTE: this number is required when a customer calls into either phone number

SECTION 2: Hazard(s) identification

Flam. Liq. 3 H226 - Flammable liquid and vapor HR01 - Toxic if swallowed Acute Tox. 3 (Oral) Acute Tox. 3 (Dermal) H311 - Toxic in contact with skin

Repr. 1B H360 - May damage fertility or the unborn child

STOT SE 1 H370 - Causes damage to organs (liver, kidneys, central nervous system, optic nerve) (oral, Dermal)

Full text of H- and EUH-statements: see section 16

GHS US labeling

Hazard pictograms (GHS US)

Precautionary statements (GHS US)

Signal word (GHS US)

Hazard statements (GHS US) H226 - Flammable liquid and vapor

H301+H311 - Toxic if swallowed or in contact with skin

H360 - May damage fertility or the unborn child

H370 - Causes damage to organs (liver, kidneys, central nervous system, optic nerve) (oral, Dermal)

P210 - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

P233 - Keep container tightly closed.

P243 - Take precautionary measures against static discharge.

P260 - Do not breathe mist, spray, vapors.

P264 - Wash hands thoroughly after handling P270 - Do not eat, drink or smoke when using this product.

P271 - Use only outdoors or in a well-ventilated area.

P280 - Wear protective gloves, protective clothing, eye protection, face protection.

P302+P332 - If on skin: Wash with plenty of soap and water.
P303+P361+P353 - If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with

P304+P340 - If inhaled: Remove person to fresh air and keep comfortable for breathing.

Page 1 of 9 Release Date: 2021-09-20

Reference Guide

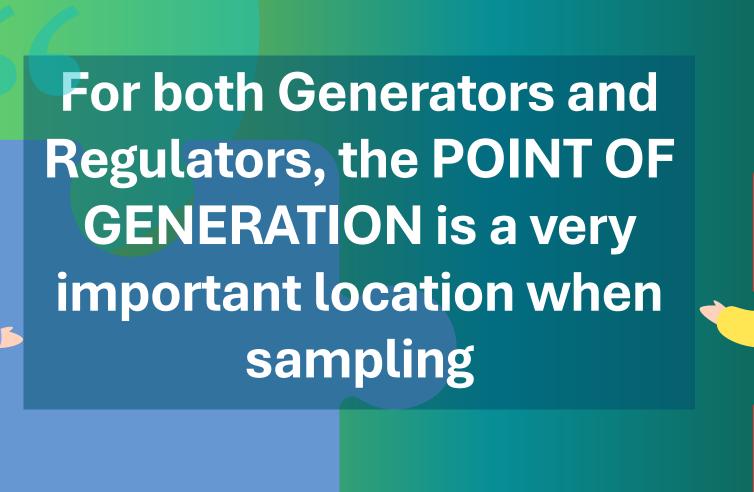
Corrosivity - solids	(1:1 with water)	I	125				
METH		≤ 2 or ≥ 12.5 9045D					
Substance	10x rule	STLC (mg/L)	TTLC (mg/Kg)				
Antimony	150	15	500				
Arsenic	50	5	500				
Barium [†]	1,000	100	10,000				
Beryllium	8	0.75	75				
Cadmium Chromium VI	10 50	1 5	100 500				
Chromium, total	50	5 (560)‡	2,500				
Cobalt	800	80	8,000				
Copper	250	25	2,500				
Lead	50	5	1,000				
Molybdenum ^{††}	3,500	350	3,500				
Nickel	200	20	2,000				
Selenium Silver	10 50	5	100				
Thallium	70	7	500 700				
Vanadium	240	24	2,400				
Zinc	2,500	250	5,000				
METHOD:	•	WET / 6010B	6010B				
Mercury	2	0.2	20				
METHOD:	-	WET / 7470A/1B	7470A/1B				
Trichloroethylene	2,040	204	2,040				
METHOD:	-	WET / 8260B	8260B				
Aldrin	I	0.14	1.4				
Chlordane	3	0.25	2.5				
DT, DDE, DDD	1	0.1	1 -				
Dieldrin	8	0.8	8				
Endrin	0	0.02 0.47	0.2 4.7				
Heptachlor Kepone	5 21	2.1	21				
Methoxychlor	100	10	100				
Mirex	21	2.1	21				
entachlorophenol	17	1.7	17				
Toxaphene	5	0.5	5				
METHOD:	-	WET / 8270C	8270C				
PCB	50	5	50				
METHOD:	- 1	WET / 8082	8082				
Dioxin	0	0.001	0.01				
METHOD:	E	WET / 8280A	8280A				
Fluoride salts	1,800	180	18,000				
METHOD:		WET / 300.1	300.1				
Asbesto		≥ 1'	%				
Acute Oral							
Acute Derma		< 2,500 mg/Kg < 4,300 mg/Kg					
Acute Inhalati		< 10,000					
Acute Aquatic 96		< 500 r	10.0				
Used Oil	Any spent an	nount (if according to H	SC 25250.4)				
METHOD:		8015M - Oil Range	1. y 1				

Federal Wa	ste Critiera (RCRA)	
rederal Wa	iste Critiera (RCRA)	
Ignitability - liquids* (D001)	< 60°C	(140°F)
METHOD:		STM D 93)
Corrosivity - liquids (D002)		≥ 12.5
METHOD:	9040C o	r 9045D
Reactivity (D003)	cyanides	sulfides
METHOD:	9010C×	9030B*
	20	#C* D / #
Substance	20x rule	TCLP (mg/L)
Arsenic (D004)	100	5
Barium [†] (D005)	2,000	100
Cadmium (D006)	20	1
Chromium VI (D007)	100	5
Lead (D008)	100	5
Mercury (D009)	4	0.2
Selenium (D010)	20	1
Silver (D011)	100	5
METHOD:	-	1311 / 6010B
Benzene (D018)	10	0.5
Carbon Tetrachloride (D019)	10	0.5
Chlorobenzene (D021)	2,000	100.0
Chloroform (D022)	120	6.0
1,4-Dichlorobenzene (D027)	150	7.5
1,2-Dichloroethane (D028)	10	0.5
1,1-Dichloroethene (D029)	14	0.7
Hexachlorobutadiene (D033)	10	0.5
Hexachloroethane (D034)	60	3.0
Nitrobenzene (D036)	40	2.0
Pyridine (D038)	100	5.0
Tetrachloroethylene (D039)	14	0.7
Trichloroethylene (D040)	10	0.7
Vinyl Chloride (D043)	10	0.2
METHOD:	- :	1311 / 8260B
F Listed Hazardous Was	stes (spent, non-speci)	ic source)
Acetone (F003), Benzene (F005), r	-Butanol (F003) Carl	on Disulfide (F005
Carbon Tetrachloride (F005), Chl	orobenzene (F001), D	iethyl Ether (F003).
1,2-Dichlorobenzene (F002), Eth	yl Acetate (F003), Etl	ylbenzene (F003).
Isobutanol (F005), Methanol		
Methyl Isobutyl Ketone (F	7003), Methylene Chlo	oride (F001),
Nitrobenzene (F004), 2-Nit	tropropane (F005), Pyr	ridine (F005),
Tetrachloroethyler	ne (F001), Toluene (F	005),
1,1,1-Trichloroethane (F001,		
Trichloroethylene (F001), Trichl		
METHOD.		on
METHOD:	820	OUB
NOTES:		
(1) Laboratory methods (excluding WET & Wastewater methods are not recommended	fluorides) according to USEF except for fluoride salts and f	A SW-846 protocols ish bioassay
(2) For asbestos and elemental metals, the s are in a friable, powdered or finely divided		apply only if the substance
(3) Do not compare lists based solely on un Note: mg/L equals mg/Kg for water only.	its Ensure methods are corre	et.
Other than an aqueous solution containing	g less than 24 percent alcohol	by volume.
* Cyanide/sulfide methods do not measure	reactivity.	
Excludes barium sulfate.		
" Forty for mot & form to de de		

21

EU 1/24/201


Which tests would you request?



Where are you going to

collect your sample?

Types of Sampling

PROBABILITY

Random sampling can be simple (singular), systematic (multiple), or stratified (multiphase)

GRAB

A singlar sample collected at a discrete location and time

COMPOSITE

Combines multiple individual samples into one "composite" sample for testing

Representative Sampling

Generators are required to conduct waste determinations that draw accurate conclusions about their waste as a whole.

Representative data comes from a sample that can be expected to exhibit the average properties of the entire waste. Statistical analysis of data shows whether the samples taken are truly representative of the waste in total.

Authoritative Sampling

Regulators are not required to conduct representative sampling.

The regulator can collect a grab sample from the point of generation when and where they suspect the sample to be most hazardous.

Question 4:

If the process equipment has 3 different solutions that drain from 3 pipes into one waste container, how many samples would you take?

BEFORE SAMPLING...

Safety 1st

Remember, you are sampling something that is potentially hazardous.

Make a Plan

Be prepared. Plan carefully to avoid mistakes. You won't want to sample twice.

Documentation

Stay organized when sampling and document the details.

Communicate

Communicate with everyone ahead of time. Set roles and responsibilities.

Safety First

Unless it is time critical, it's best to stop and get a plan together before sampling. In ANY case, safety should always be your #1 consideration.

- 1. What are the **Hazards**?
 - Releases
 - Toxic Vapors, Fumes or Dust
 - Traffic
 - Confined Space
- 2. What Personal Protective Equipment do you need?
- 3. What are your Contingency Plans?

Make a Plan

- 1. What are you sampling?
- 2. How many samples are you going to collect?
- 3. Do you have the right equipment?
- 4. Which tests are you going to run?
- 5. Are there any special handling requirements for any of the samples?
- 6. Will you have any help?
 - Dirty sampler
 - ✓ Clean sampler
 - ✓ Scribe
- 7. Who will analyze the samples?

Documentation

If it isn't documented, did it happen? Depending on why you are sampling, documentation serves different purposes.

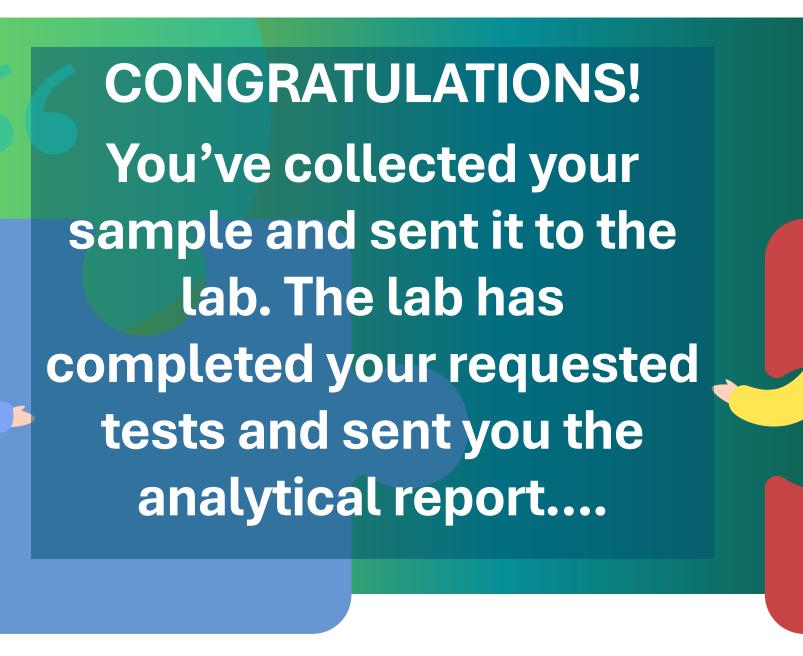
- **Generators:** Written documentation demonstrates a proper and complete waste determination was made.
- Regulators: Documentation demonstrates what was sampled and chain of custody was maintained.

Documentation Includes: Photographs; Videos; Chain of Custody, Written Plans, Procedures, Statements, or Reports; etc.

Communication

Even the best laid plans can hit snags. Make sure to communicate with your team and everyone involved so everyone can be prepared and successful

- 1. Communicate with the lab before and after sampling:
 - **BEFORE:** Let them know what you are sampling. Ask if there are any special handling considerations.
 - AFTER: Receipt of samples and results of lab analysis
- 2. Communicate with your team before and after sampling:
 - BEFORE: Roles and responsibilities
 - AFTER: Lessons learned


3 samples x 2 tests:

Flashpoint and Aquatic Tox

County of Sa	n Diego				HMD	Chain-of-C	usto	dy Re	cord					Date	e(11711	9 Page	of
Project/ UPFP#/ Address Sampler's Signature							7	ANALYS	D	SAM	PLE TY	PE				LAB RESULTS		
							so.	90		utibility	nc Tox			IC.	CONTAINERS	Dept. of Hazard P.O. Bo	BE SENT TO: f Environments ous Materials I ox 129261 ego, CA 92112	Division
Sampler's Printed	Name_	rteen e	MIRELD			_	Metals	Netal (J. Ligi	22			HAS	NO.		COMME	NTS
SAMPLE LABEL NO.	DATE (of Col	TIME lection)	741 9	DESCRIPTION OF SAMPLE/ CONTAINER/LOCATION			Title 22 Met	Title 22 Metals (STLC)	Hď	Flashpoint/Ignitibility	Other: Aguatic	SOLID	LIQUID	MULTI-PHASIC	NO OF		20 00 Feb 100 C 100 Fe	
11328	10/17/19	12:268	#1-FIXO	tive						狐	X		K			99.	91. Wetho	inol MaOH
11329	10/17/19	12:35	# 2- 60	cin	·						×		×					
11330	शासाल	12:40	#3-TM	9015AI						¥.,	*		×					
11331	10/17/10	12:29	#1-Fix	ative					X	4					999	1 % Me	0+	
11324	लिलि	12:34	# Z- E0	sin						X	-							
15538	الال ال	12:39	#3-1	hiazine						X	1							
RON (S.	P	10	-17-19	33UpM	HMD LAB CUSTODIAN (P	RINT NAME)	DATE			TIME IN:		HMD	AB CUST	ODIAN	(PRINT	NAME)	DATE IN:	TIME IN:
HMDLAB CUSTODE	AN (PRINT NA)	ME) DAT	EOUT: 19	D35AM	HMD LAB CUSTODIAN (PI	RINT NAME)	DATE	OUT:	,	TIME OUT	ľ:	HMDLA	AB CUST	ODIAN	PRINT	NAME)	DATE OUT:	TIME OUT:
1) RECHOUSE	J. J. Gust.	ન ત	Date [0-17-19	RELINGU	IISHED BY	jo-2/	0					Date	F	Sample Conditions Received On Ice Yes/No Tape Seal Intact Yes/No				
Printed Name COSD - Company			328pm	Time Printed Name			4-							Time		Special Shipment/Handling or Storage Requirements:		
Signature	2		Date RECEIVED BY			/02	-18 F	RECEIVED BY					7	Date	S	Split Sample Provided To: Declined per		
Printed Name CUS (O-HM	0	333pm	Printed Name FRA	nessoo	1n:4		rinted Na	me					Time				

FATHEAD MINNOW HAZARDOUS WASTE DEFINITIVE BIOASSAY

Lab No.: A-19082113-001

Client/ID: TestAmerica 440-248291-2

TEST SUMMARY

Species: *Pimephales promelas*. Regulations: CCR Title 22.

Fish weight (gm): av: 0.38; min. 3.30; max: 0.44.

Test chamber volume: 10 liters. Temperature: 20 +/- 2°C.

Aeration: Single bubble through narrow bore tube if DO <5.5 mg/L.

Number of replicates: 2.

Dilution water: Soft reconstituted water (40-48 mg/l CaCO₅).

Extraction method: mechanical shaking.

Source: Thomas Fish. Ref. Tox. No.: RT-190823.

Test Protocol: California F&G/DHS 1988.

Endpoints: LC50 at 96 hrs.

Test type: Static. Feeding: None.

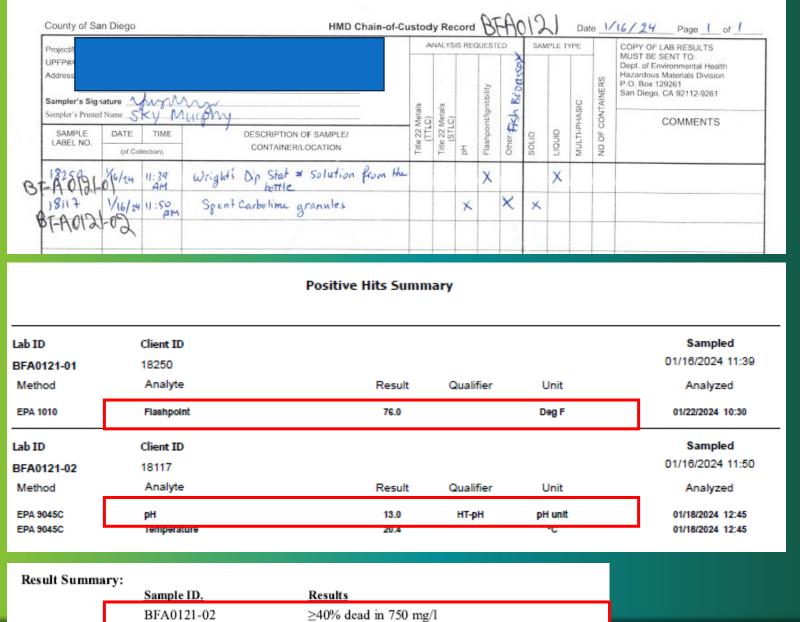
Number of fish per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

	IN	INITIAL 24 Hr					48 Hr				72		96 Hr						
Date/Time:	8-23	-19	1030	8-24-19 1030			8-25	79	(0)	10	8-26-19 1045				8-27-19 103			036	
Analyst:		2			2	,		2				200				2			
	°C	DO	pН	°C	DO	pН	# D	°C	DO	pН	# D	°C	DO	рН	# D	°C	DO	рН	# D
Control A	۶.۲	8.1	2.7	20.1	7.5	7.6	0	20,3	5.7	7.8	0	204	60	7.5	O	2.3	7.4	7.7	0
Control B	20.1	g.3	7.8	Zo. 2	7.3	7.6	0	20.4	6.3	7.7	0	203	٤4	25	Ò	20, 2	2. 1	7.6	0
10 mg/l A	2٠. ک	8.3	7.8	do.)	7.3	7.5	0	2a.3	6.7	7.7	G	201	55	ንሩ	$\mathcal{C}_{\mathcal{I}}$	20 3	7.0	7.5	0
10 mg/l B	20.1	8.3	7.8	20.3	7.4	7.5	0	20.3	7.1	7.6	G	203	53	25	0	2.2	7. (7. 7	0
25 mg/l A	2.0	3 . 2	7.8	20.2	7.4	7.5	0	<u>ک</u> . ر	6.1	7. 7	0	2013	مکایک	20	0	20.3	7.0	7. 7	0
25 mg/l B	2o. ₹	8.3	7.8	20.2	7.5	7. r	0	20.7	6. >	7.7	0	20.4	58	7.5	U	¿o. 2	7.1	7.6	0
50 mg/l A	20,1	8.1	7.8	20.2	7.4	7.5	0	<u>ಹಿ. 7</u>	6.3	7.6	0	7013	5.4	75	U	ر و2	7.0	7.6	0
50 mg/l B	20.1	8.7	7.8	20.3	7.4	7.5	0	Zo, ₹	61	7.5	0	20,3	5,3	25	ں	20.1	7. (7.6	0
75 mg/l A	20.1	8.7	7-8	Za y	7-7	7.7	3	20.3	6.2	7-7	1	24.2	5,5	25	1	20.2	7. 2	7. 6	1
75 mg/l B	70.2	8.4	7.8	Zo. 3	7.4	7.1	4	20, 2	6.3	7.1	1	w	5.3	7.5	1	243	7.0	7.6	2
100 mg/l A	241	8,2	7.8	20,1	7.4	7.5	10	-	`	`	`	`	`	`	`	_			_
100 mg/l B	70.7	8. (7.8	۵.۱	7.4	7.5	10	_	·	-	-	_	-	-	_	_	-	_	-

Comments: Dissolved Oxygen (DO) readings in mg/I O2


Test Aeration: None AA

* Aerated . (Minimum needed to maintain DO > 5.5 mg/L through narrow-bore glass tube at < 100 bubbles per minute)

		Client	Sample Res	sults				
Client: County of San Diego							Job ID: 440-2	52859-1
Client Sample ID: 11331 Date Collected: 10/17/19 12:29 Date Received: 10/21/19 12:50			-		Lal	b Sample	ID: 440-252 Matrix	2859-4 : Waste
General Chemistry Analyte Flashpoint	Result <74.7	Gualifier	RL	Unit Degrees F	<u>D</u> .	Prepared	Analyzed 10/21/19 16:19	Dil Fac
Client Sample ID: 11326 Date Collected: 10/17/19 12:34 Date Received: 10/21/19 12:50					Lal	b Sample	ID: 440-252 Matrix	2859-5 : Waste
General Chemistry Analyte Flashpoint	Result	Qualifier	RL	Unit Degrees F	<u>D</u> .	Prepared	Analyzed 10/21/19 16:19	Dil Fac
Client Sample ID: 15538 Date Collected: 10/17/19 12:39 Date Received: 10/21/19 12:50	197.1			Degrees r	Lal	b Sample	ID: 440-252	2859-6 : Waste
General Chemistry Analyte Flashpoint	Result >201	Qualifier	RL	Unit Degrees F	<u>D</u>	Prepared	Analyzed 10/21/19 16:19	Dil Fac

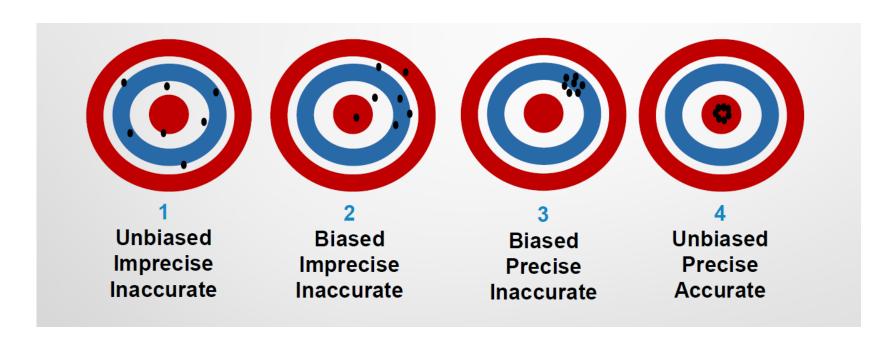
Question 5:

Which violations apply?

Quality Assurance (QA)

- Legally Defensible Data
- Adherence to methods and/or regulations
- Technically Defensible Data
- Support by controls & QC samples
- Consistent known quality

Quality Control (QC)


QC processes and activities focus on elimination or minimization of items such as:

- False Positives
- False Negatives
- Mis-quantitations

Data Quality

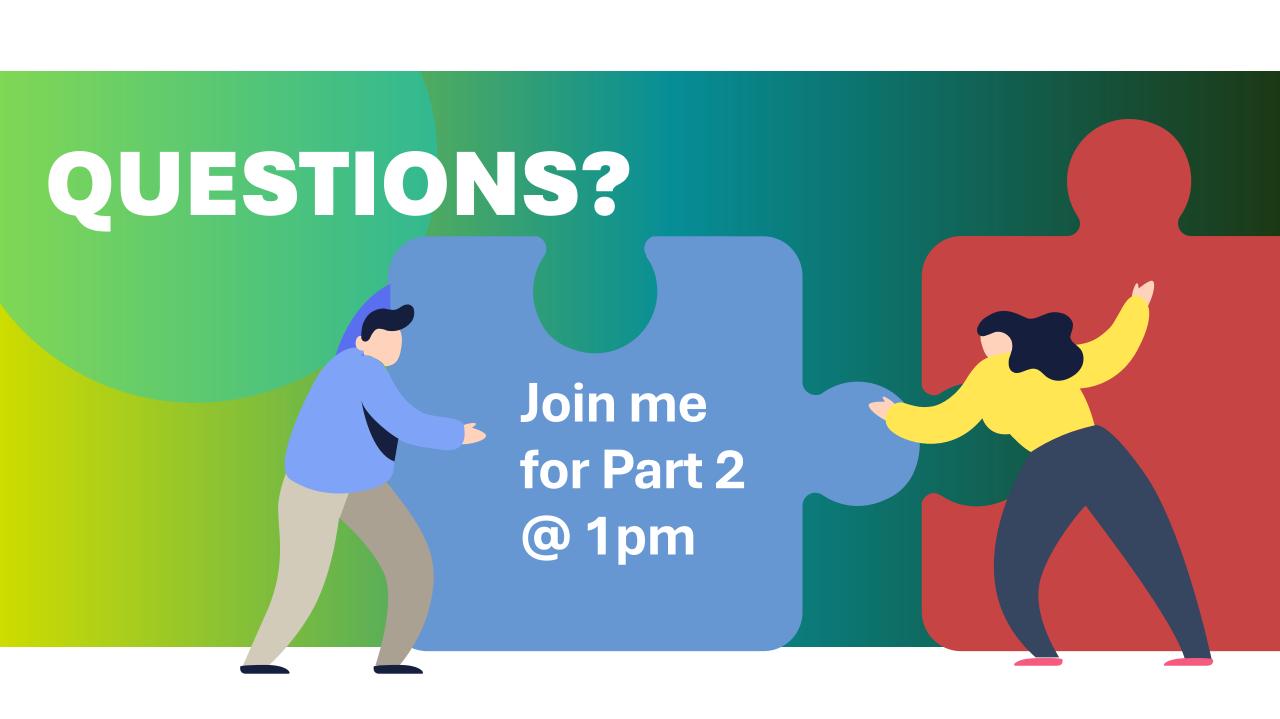
Sample results are only as good as the quality of the data

Data quality are supported by quality control samples that evaluate bias, precision, and accuracy

Why Data Quality Matters

Qualifiers	
GC/MS VOA Qualifier J	Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Common Report Flags


- "U" or "ND": compound not detected
- "J": estimated value
- "B": compound detected in blank
- "S, L, M": Spike Recovery Issue
- "R": RPD recovery issue
- "H" Hold time exceeded
- "D": Dilution performed

Key Points

- Check the SDS for clues
- Safety First
- Point of Generation is very important
- QA/QC matters

Thank You for Attending

Arleen Gurfield, MPH, REHS

Supervising Environmental Health Specialist San Diego County CUPA

Email: arleen.gurfield@sdcounty.ca.gov

Phone: 858-229-1135

