

Understanding Common RAGAGEPs

Chad Collin
Process Safety Consultant
Resource Compliance

Session Code TH-A2 February 29, 2024

26th California Unified Program Annual Training Conference February 26-29, 2024

INTRODUCTION

RAGAGEP & the CalARP Regulation

RAGAGEPs Applied to Common Substances

RAGAGEP Examples in the Field

26th California Unified Program Annual Training Conference February 26-29, 2024

RAGAGEP & the CalARP Regulation

Section 2755.1(b) Safety Information

(b) The owner or operator shall ensure that the process is designed in compliance with recognized and generally accepted good engineering practices. Compliance with federal or state regulations that address industry-specific safe design or with industry-specific design codes and standards may be used to demonstrate compliance with this section.

Section 2760.1(d) Process Safety Information

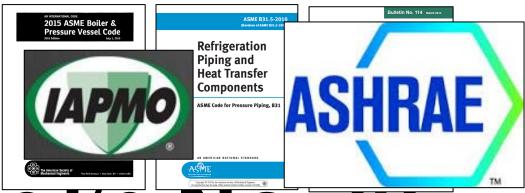
- (2) The owner or operator shall document that equipment complies with recognized and generally accepted good engineering practices.
- (3) For existing equipment designed and constructed in accordance with codes, standards, or practices that are no longer in general use, the owner or operator shall determine and document that the equipment is designed, maintained, inspected, tested, and operating in a safe manner.

Section 2755.5(d) Maintenance

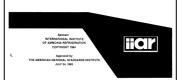
(d) The owner or operator shall perform or cause to be performed inspections and tests on process equipment. Inspection and testing procedures shall follow recognized and generally accepted good engineering practices. The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations, industry standards or codes, good engineering practices, and prior operating experience.

Section 2760.5(d) Mechanical Integrity

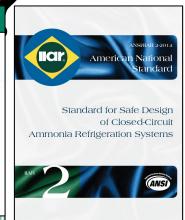
- (2) Inspection and testing procedures shall follow recognized and generally accepted good engineering practices.
- (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more frequently if determined to be necessary by prior operating experience.



	Title 19 CCR Division 2 Ch 4.5 California Accidental Release Prevention (CalARP) Program	Title 40 CFR §68 EPA's Risk Management Program
Equipment (design)	§2760.1(2) The owner or operator shall document that equipment complies with recognized and generally accepted good engineering practices.	§68.65(d)(2) The owner or operator shall document that equipment complies with recognized and generally accepted good engineering practices.
Inspection and testing procedures	§2760.5(d)(2) Inspection and testing procedures shall follow recognized and generally accepted good engineering practices.	§68.73(d)(2) Inspection and testing procedures shall follow recognized and generally accepted good engineering practices.
Inspection and testing frequency	§2760.5(d)(3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices , and more frequently if determined to be necessary by prior operating experience.	§68.73(d)(3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices , and more frequently if determined to be necessary by prior operating experience.


RAGAGEP

References in CalARP & RMP Regulations



CALIFORNIA GOVERNOR'S OFFICE OF EMERGENCY SERVICES TEXT OF REGULATIONS

CALIFORNIA CODE OF REGULATION

TLE 19. PUBLIC SAFETY

DIVISION 2. CALIFORNIA GOVERNOR'S OFFICE OF EMERGENCY SERVICES CHAPTER 4.5 CALIFORNIA ACCIDENTAL RELEASE PREVENTION (CaIARP)

Detailed Analysis

Article 1.	General	1
2735.1	Purpose	1
2735.2	Scope	1
2735.3	Definitions	2
2735.4	Applicability	6
2735.5	General Requirements	8
2735.6	CalARP Program Management System	10
2735.7	Emergency Information Access	11
Article 2.	Registration	11
2740.1	Registration	11
Article 3.	Risk Management Plan Components and Submission Requirements	13
2745.1	Submission	13
2745.2	RMP Review Process	15
2745.3	RMP Executive Summary Component	16
2745.4	RMP Offsite Consequence Analysis Component	17
2745.5	RMP Five-year Accident History Component	
2745.6	RMP Program 2 Prevention Program Component	
2745.7	RMP Program 3 Prevention Program Component	
2745.8	RMP Emergency Response Program Component	
2745.9	RMP Certification	
2745.10	RMP Updates	
2745.10.5	Required RMP Corrections	
2745.11	Covered Process Modification	
2745.12	Certificate of Occupancy	25
Article 4.	Hazard Assessment	25
2750.1	Hazard Assessment Applicability	
2750.2	Offsite Consequence Analysis Parameters	26
CalARP Progra	am Regulations January 1, 2015 I	Page i

Industry Guidelines

Industry-Specific Standards

Regulations & Model Codes

26th California Unified Program Annual Training Conference February 26-29, 2024

Frustrations with RAGAGEP

- Confusing
- Updates & new additions
- Grandfathering
- What's required vs. recommended

Check the facilities PSI – Design Codes & Standards Employed; Materials of Construction

OSHA RAGAGEP Memo

June 5, 2015

MEMORANDUM FOR: REGIONAL ADMINISTRATORS AND STATE PLAN DESIGNEES

THROUGH: DOROTHY DOUGHERTY
Deputy Assistant Secretary

. .

FROM: THOMAS GALASSI Director

Directorate of Enforcement Programs

SUBJECT: RAGAGEP in Process Safety Management Enforcement

This memorandum provides guidance on the enforcement of the Process Safety Management (PSM) Standard's recognized and generally accepted good engineering practices (RAGAGEP) requirements, including how to interpret "shall" and "should" language in published codes, standards, published technical reports, recommended practices (RP) or similar documents, and on the use of internal employer documents as RAGAGEP. Enforcement activity, including the *Petroleum Refinery Process Safety Management National Emphasis Program* (Refinery NEP), and requests for assistance from the field, revealed the need for quidance on the PSM standard's RAGAGEP provisions.

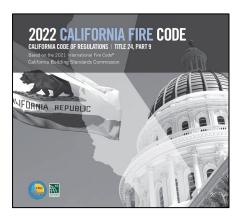
26th California Unified Program Annual Training Conference February 26-29, 2024

OSHA RAGAGEP Memo

- Shall vs. Should
- Normative vs. Informative
- Primary Sources of RAGAGEPs
- Use of Internal Standards

Model Codes & Standards Development

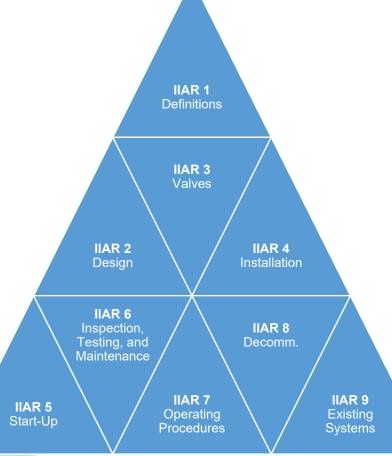
- American National Standards Institute (ANSI)
- International Code Council (ICC)
- International Association of Plumbing and Mechanical Officials (IAPMO)
- American Society of Mechanical Engineers
- California Building Standards Commission (CBSC)



26th California Unified Program Annual Training Conference February 26-29, 2024

Model Codes

- California Mechanical Code (CMC)
- Uniform Mechanical Code (UMC)
- California Fire Code (CFC)


RAGAGEPs Applied to Common Substances

RAGAGEPs Applied & Field Examples:

Ammonia Refrigeration

Updates to IIAR Standards

#	Standard Title	Previous	New
1	American National Standard for Definitions and Terminology Used in IIAR Standards	2017	2022
2	American National Standard for Design of Safe Closed-Circuit Ammonia Refrigeration Systems	2014	2021
3	American National Standard for Ammonia Refrigeration Valves	2017	2022
4	American National Standard for the Installation of Closed-Circuit Ammonia Refrigeration Systems	2015	2020
5	American National Standard for the Startup of Closed-Circuit Ammonia Refrigeration Systems	2013	2019
6	American National Standard for the Inspection, Testing, and Maintenance of Closed-Circuit Ammonia Refrigeration Systems	N/A	2019
7	American National Standard for Developing Operating Procedures for Closed-Circuit Ammonia Refrigeration Systems	2013	2019
8	American National Standard for Decommissioning of Closed-Circuit Ammonia Refrigeration Systems	2015	2020
9	American National Standard for Minimum System Safety Requirements for Existing Closed-Circuit Ammonia Refrigeration Systems	N/A	2020

Model code	Reference to IIAR	
2021 Uniform Mechanical Code	§1102.2 Ammonia Refrigeration Systems. Refrigeration systems using ammonia as the refrigerant shall comply with IIAR 2, IIAR 3, IIAR 4, and IIAR 5 and shall not be required to comply with this chapter.	Ro Co
2021 International Mechanical Code	§1101.1.2 Ammonia refrigerant. Refrigerant systems using ammonia as the refrigerant shall comply with IIAR 2, IIAR 3, IIAR 4 and IIAR 5 and shall not be required to comply with this chapter.	

IIAR Standards

Referenced in model codes

Model code	Reference to IIAR
2021	§608.1.2 Ammonia refrigeration. Refrigeration systems using ammonia refrigerant
International	and the buildings in which such systems are installed shall comply with IIAR 2 for
Fire Code	system design; IIAR 6 for inspection, testing and maintenance; and IIAR 7 for
	operating procedures. Decommissioning of ammonia refrigeration systems shall
	comply with IIAR 8, and engineering practices for existing ammonia refrigeration
	systems shall be in accordance with IIAR 9 .
2021 NFPA 1	§53.1.3.2 Refrigeration systems using ammonia as the refrigerant shall comply with
	ANSI/IIAR 2, Standard for Equipment, Design, and Installation of Closed-Circuit
	Ammonia Mechanical Refrigerating Systems; ANSI/IIAR 6, Standard for Inspection,
	Testing, and Maintenance of Closed-Circuit Ammonia Refrigeration Systems;
	ANSI/IIAR 7, Developing Operating Procedures for Closed-Circuit Ammonia
	Mechanical Refrigerating Systems; and ANSI/IIAR 8, Decommissioning of Closed-
	Circuit Ammonia Mechanical Refrigerating Systems.

IIAR Standards

Referenced in model codes

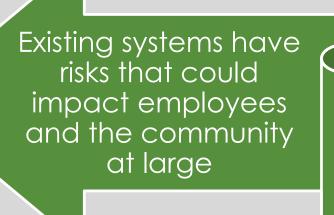
IIAR Literature - Bulletins

NOTICE

The information contained in these guidelines has been obtained from sources believed to be reliable. However, it should not be assumed that all acceptable methods or procedures are contained in this document, or that additional measures may not be required under certain circumstances or conditions.

The International Institute of Ammonia Refrigeration makes no warranty or representation, and assumes no liability or responsibility, in connection with any information contained in this document.

While the Institute recommends use of and reference to this document by private industry, government agencies and others, this publication is intended to be voluntary and not binding.


The Institute does not "approve" or "endorse" any products, services or methods. This document should not be used or referenced in any way which would imply such approval or endorsement.

IIAR 1 **Definitions** Suite of Standards IIAR 3 IIAR 4 IIAR 2 Design IIAR 6 IIAR 8 Maintenance IIAR 9 Minimum Safety IIAR 7 **IIAR 5** Start-Requirements Operating Up for Existing **Procedures Systems**

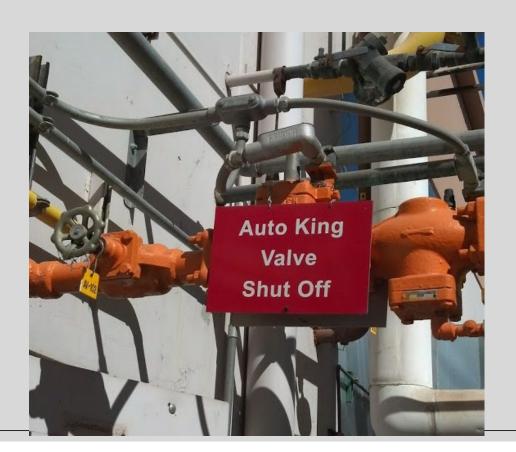
IIAR 2 andIIAR 9 - 2020:

- 1. Completed IIAR's suite of standards from standard 1 (Definitions) to this first installment of standard 9, addressing all phases of ammonia refrigeration in between.
- 2. IIAR 9 aims to address the age-old question of "grandfathering" equipment when compared to new design requirements.

IIAR 2 was not written to force existing systems into extensive upgrades

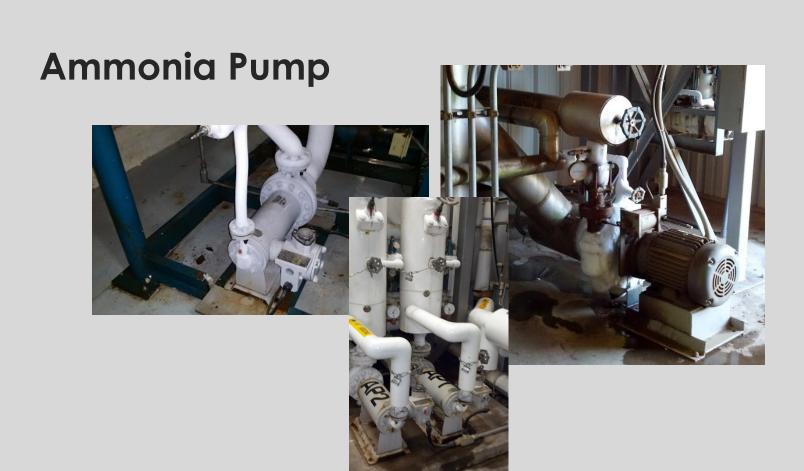
High Pressure Receiver

Compressor

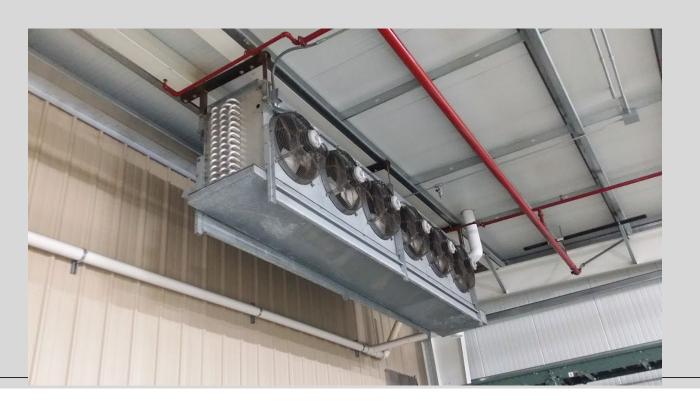


Evaporative Condenser

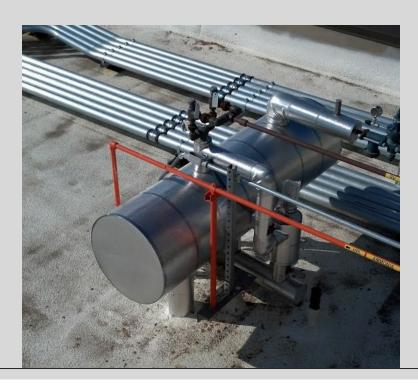
King Valve



Recirculator



Control Valves


Evaporators

Evaporators

Accumulators or Surge Drums

Plate and Frame Heat Exchangers

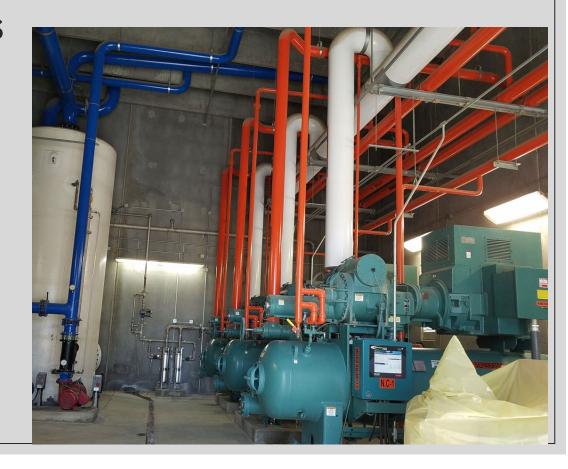
Shell and Tube Heat Exchangers

Jacketed Tanks (Silos)

Relief Valves

Relief Valves

Ammonia Diffusion Tank



Machinery Rooms

Emergency Control Box

Emergency Pressure Control System

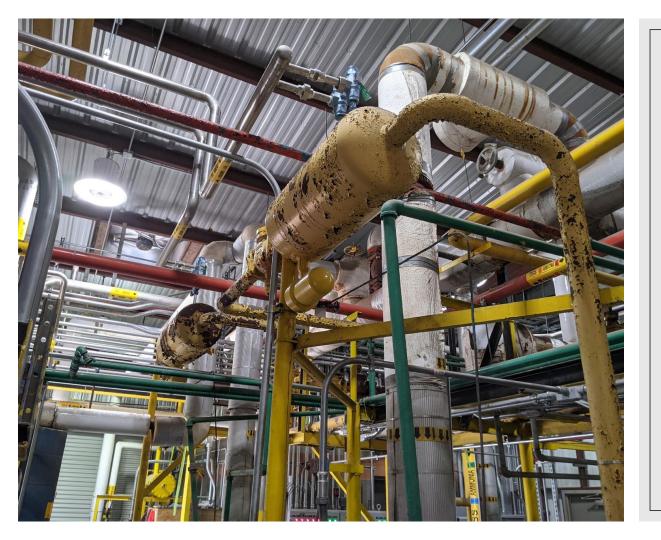
Ventilation

Ammonia Detection

Insulation

Shared between IIAR 9 & IIAR 2-2021

Shared between IIAR 9 & IIAR 2-2021



Subject	IIAR 2 Summary	IIAR 9 Summary	IIAR 9 Ref.
Low-side minimum design pressure	250 psig	150 psig	§7.2.2
Ammonia detection locations	Detection required everywhere ammonia refrigeration equipment is installed indoors; some exceptions apply	Prior to 2014, detection is not required outside of the machinery room.	§A.7.3.12
Ammonia detection minimum alarm levels	25 ppm	50 ppm	§7.3.12.2
Machinery room emergency ventilation activation	150 ppm	1,000 ppm	§7.3.12.2
Eyewash and safety showers	required wherever deliberate opening of an ammonia system occurs (line break).	At least one inside one and outside the machinery room; no requirement in other areas.	§7.3.7.1

Allowed differences comparing IIAR 9 and IIAR 2-2021

ANSI/IIAR 6-2019

American National Standard for the Inspection, Testing, and Maintenance of Closed-Circuit Ammonia Refrigeration Systems

New Standard

IIAR Bulletin Nos. 109 & 110

- These guidance documents are now retired
- Included soft language (e.g., may, should)
- Were not intended to be enforceable

ANSI/IIAR 6-2019

- Covers the minimum requirements for inspection, testing, and maintenance (ITM)
- Removed all soft language with rigid language (e.g., shall, must)
- Intended to be enforceable by authorities having jurisdiction (AHJs)

BREAKTIME!

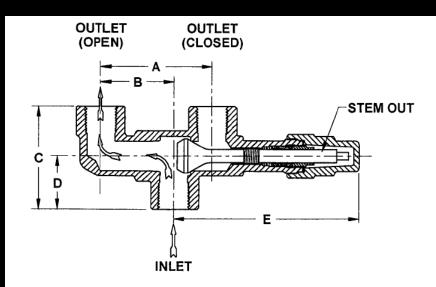
RAGAGEPs Applied & Field Examples:

Non-Refrigeration Ammonia

Facility Overview – Non-Refrigeration Ammonia

- Ag Fertilizer Facilities
- NO_x Reduction/SCR Facilities
- Water pH Control

RAGAGEP Documents: Non-Refrigeration Ammonia


Compressed Gas
 Association (CGA) G2.1 2023 Storage of Ammonia

Relief Valves

Ag Ammonia Relief Valves

It is common practice in the ammonia refrigeration industry to install a three-way isolation valve upstream of relief valves protecting an ammonia refrigeration pressure vessel. For vessels larger than 10 ft³, this is required by most model codes and standards. These three-way valves allow a relief valve to be replaced without the hassle of pumping down the entire vessel.

According to Hansen Technologies Bulletin K109h (Jul 2013) when a three-way isolation valve is used, "the valve stem should be positioned so that only one pressure-relief valve is activated."

I recently was mistaken when I assumed that this same principle would apply to three-way valves for *non-refrigeration* ammonia applications.

However, when reviewing the Squibb Taylor website regarding their three-way relief valve manifold, they included the following warning:

WARNING!

WHEN IN SERVICE, DO NOT USE A1416 WITH ONLY ONE PORT OPEN. TO GET PROPER CFM ALWAYS KEEP DIVERTER DISC IN CENTER POSITION. CLOSING PORT ONE OR TWO IS ONLY FOR CHANGING RELIEF VALVES. NEVER USE A PLUG IN PORT ONE OR TWO ON AN A1416 MANIFOLD.

In summary, good engineering practice for sizing a relief valve for ammonia refrigeration vessel considers the capacity of a single valve on a dual assembly, while an ammonia storage application considers both valves. The lesson learned is to always check with the manufacturer regarding the recommended installation and operation of their equipment. Don't assume the best practices for one manufacturer or industry will apply to another.

Pumps & Hoses

NO_X Reduction/SCR Facilities

- Large Industrial Boilers, CoGen Applications, Large Diesel Engines emit NO_x gases through exhaust
- NO_X refers to harmful nitrous oxide compounds NO and NO₂ (smog & acid rain)
- Ammonia Selective catalytic reduction (SCR) can reduce NO_X emissions by approximately 70-90%

Big Picture – SCR Facilities

Ammonia supplier transfers ammonia from truck to storage tank

Ammonia storage tank is connected to the injection piping

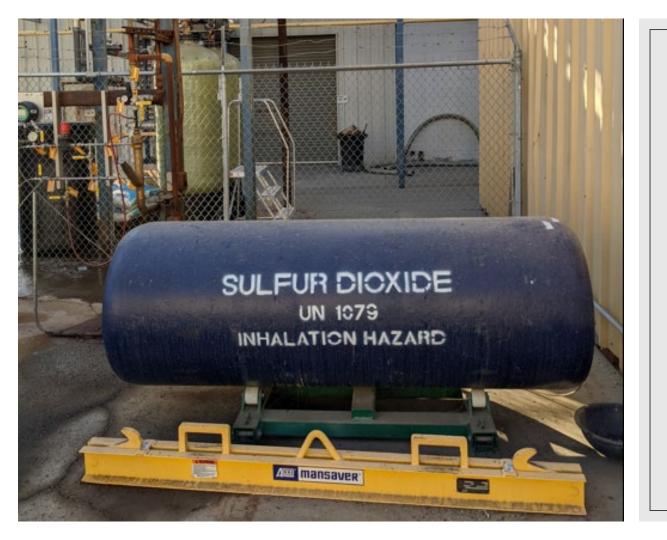
Ammonia is injected into the boiler(s) in order to convert nitrogen oxide emissions into diatomic nitrogen and water

Ammonia Storage Tank

Injection Points

Charging Connection

Relief Valves


Atmospheric Discharge

Control Valves

Pressure Sensors

RAGAGEPs
Applied & Field
Examples:

Sulfur Dioxide

Facility Overview – Sulfur Dioxide

- Wineries
- Dehydrating Facilities
- Grape Cold Storage

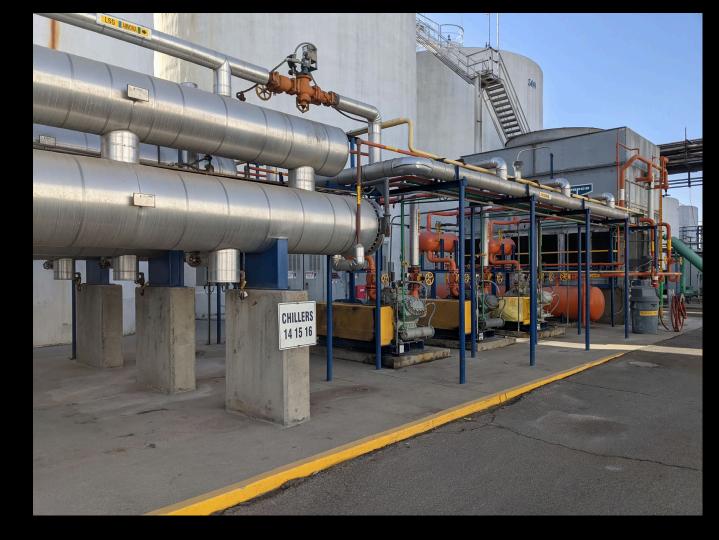
RAGAGEP Documents: Sulfur Dioxide

- Compressed Gas
 Association (CGA) G-3

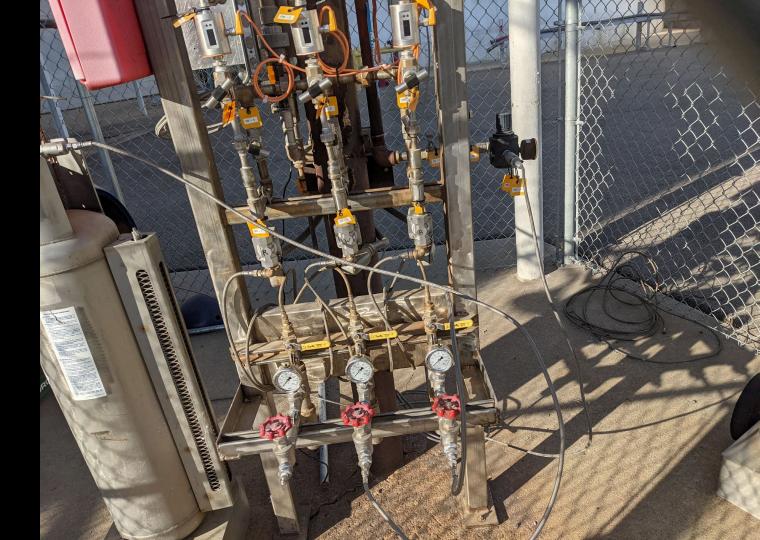
 2023 Sulfur Dioxide
- ANSI/ASME B31.3, Chemical Plant & Petroleum Refinery Piping

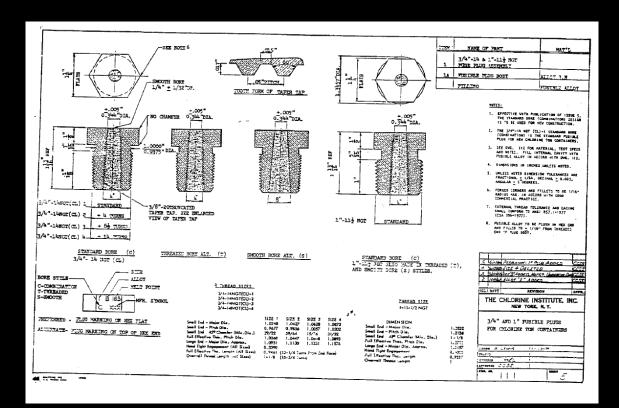
Sulfur Dioxide Processes

- The RAGAGEP for these processes is far less thorough. CGA G-3 is applicable for sulfur dioxide. This is not an ANSIcertified standard.
- Calibrated sulfur dioxide sensors are important.
- Proper respiratory protection is vital for sulfur dioxide applicators.



Note on Wineries: Multi-Process

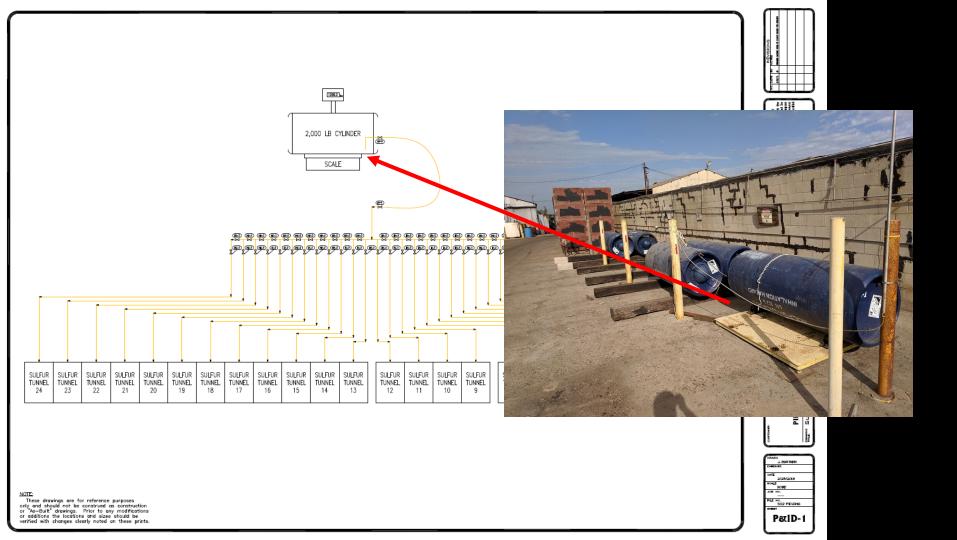


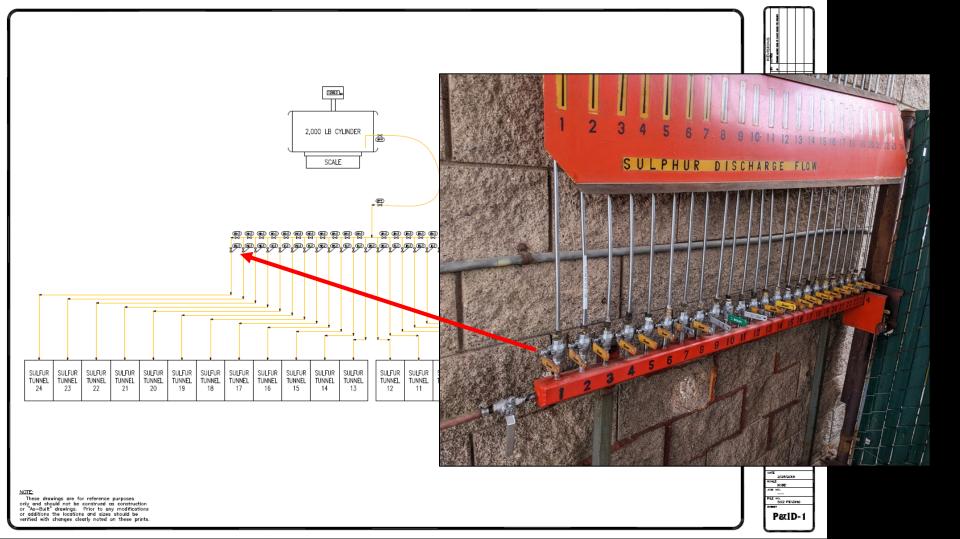


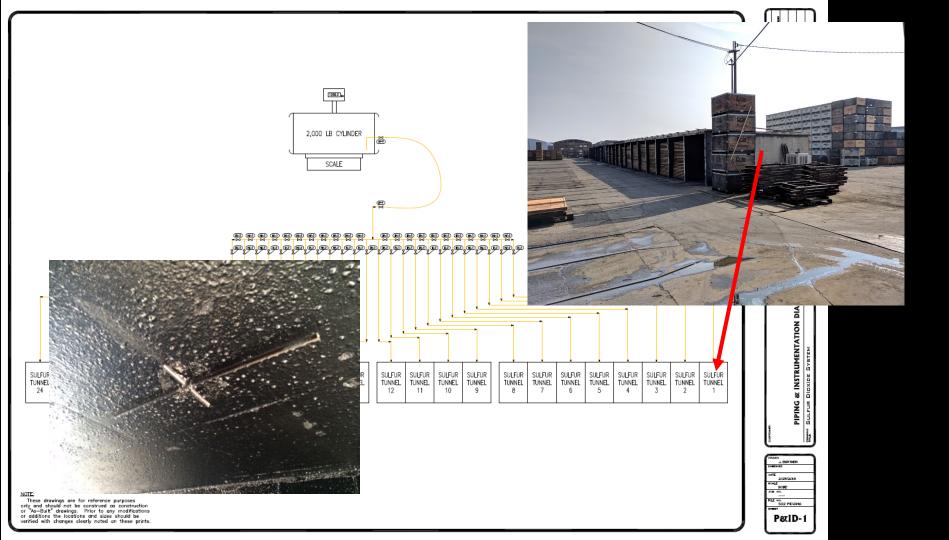
DOT 106A Containers

Grapes are grown on vines

Big Picture – Dehydrating Facilities


Grapes are dried on the ground by the sun


After processing, raisins are fumigated with sulfur dioxide



The raisins are "bleached" golden

Grape Cold Storage

RAGAGEPs
Applied & Field
Examples:

Facility Overview - Chlorine

- Agricultural/City Water Treatment
- Manufacturing Waste Water
- Food Production Water Treatment

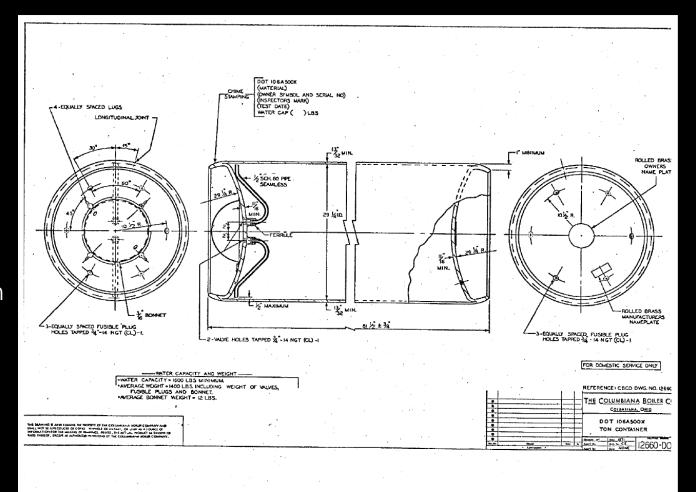
RAGAGEP Documents: Chlorine

- The Chlorine Institute Pamphlet 6: Piping Systems for Dry Chlorine
- Ton containers comply with 49 CFR §179, Subpart E with regard to DOT specifications

Big Picture – Chlorine Facilities

Bacteria and vegetation growth occurs in crop/city water supplies.
Additionally, some manufacturing processes result in contaminated waste water.

Water is used in a variety of applications during food processing.


Chemicals are injected into the water to kill bacteria/vegetation or to neutralize harmful elements.


Clean water and food products are supplied to end-users.

DOT 106A Concave Head Chlorine One Ton Containers

RAGAGEPs Applied & Field Examples:

Petroleum

RAGAGEP Documents: Petroleum

American Petroleum Institute

- API 510 Pressure Vessel Inspection Code: In-service Inspection, Rating, Repair, and Alteration
- API standards have been referenced more than 1,100 times in international laws, regulations, national standards.

Field Examples: Petroleum

26th California Unified Program Annual Training Conference February 26-29, 2024

CALIFORNIA GOVERNOR'S OFFICE OF EMERGENCY SERVICES TEXT OF REGULATIONS

CALIFORNIA CODE OF REGULATIONS

TITLE 19 PUBLIC SAFETY

DIVISION 2. CALIFORNIA GOVERNOR'S OFFICE OF EMERGENCY SERVICES CHAPTER 4.5 CALIFORNIA ACCIDENTAL RELEASE PREVENTION (CalARP)

Detailed Analysis

Article 1.	General	1
2735.1	Purpose	
2735.2	Scope	1
2735.3	Definitions	
2735.4	Applicability	
2735.5	General Requirements	
2735.6	CalARP Program Management System	10
2735.7	Emergency Information Access	1
Article 2.	Registration	11
2740.1	Registration	11
Article 3.	Risk Management Plan Components and Submission Requirements	
2745.1	Submission	13
2745.2	RMP Review Process	15
2745.3	RMP Executive Summary Component	16
2745.4	RMP Offsite Consequence Analysis Component	17
2745.5	RMP Five-year Accident History Component	18
2745.6	RMP Program 2 Prevention Program Component	18
2745.7	RMP Program 3 Prevention Program Component	20
2745.8	RMP Emergency Response Program Component	21
2745.9	RMP Certification	22
2745.10	RMP Updates	22
2745.10.5	Required RMP Corrections	24
2745.11	Covered Process Modification	24
2745.12	Certificate of Occupancy	25
Article 4.	Hazard Assessment	25
2750.1	Hazard Assessment Applicability	25
2750.2	Offsite Consequence Analysis Parameters	26
CalARP Prog	ram Regulations January 1, 2015	Page i

Industry
Guidelines

Industry-Specific Standards

Regulations & Model Codes

26th California Unified Program Annual Training Conference February 26-29, 2024

Questions?

Chad Collin

Process Safety Consultant - Resource Compliance

<u>ccollin@resourcecompliance.com</u>

(559) 725-5633

26th California Unified Program Annual Training Conference February 26-29, 2024