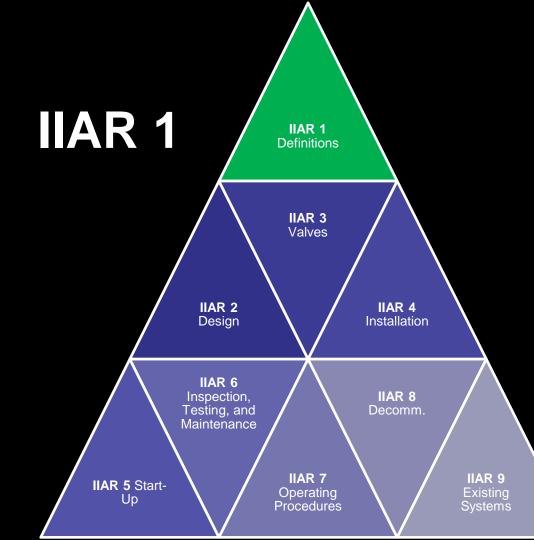
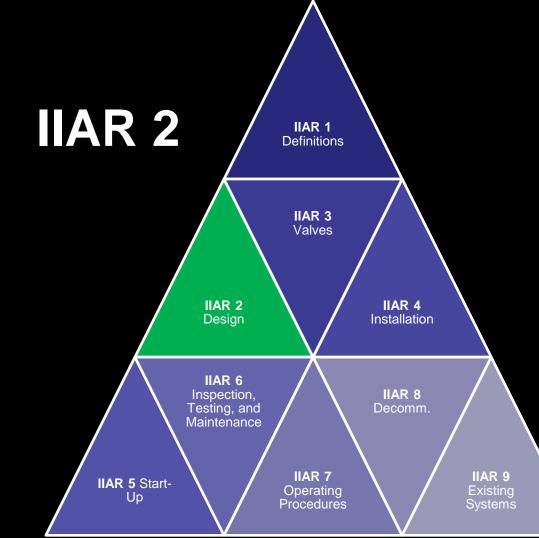


AMMONIA REFRIGERATION CODES AND STANDARDS March 29, 2022

24th California Unified Program Annual Training Conference March 22, 23, 24, 29, 30, 31 - 2022

24th California Unified Program Annual Training Conference March 22, 23, 24, 29, 30, 31 - 2022





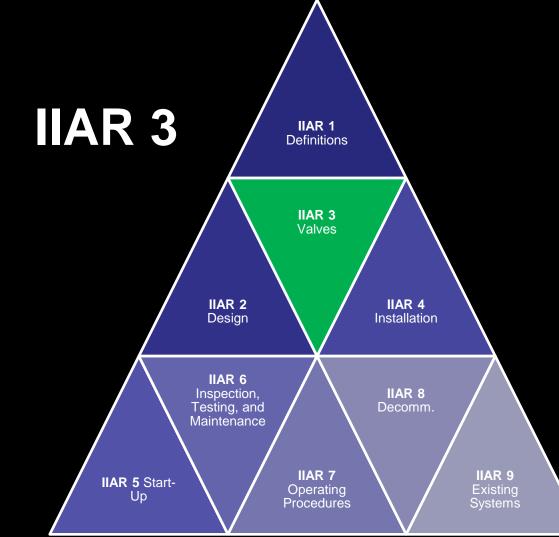
ANSMAR 1-2017 American National Standard

> Standard for Definitions and Terminology Used in IIAR Standards

Approved by the American National Standards Institute June 30, 2017 Supersedes ANSI/IIAR 1-2012

ANSI/IAR 2-2014 American National Standard

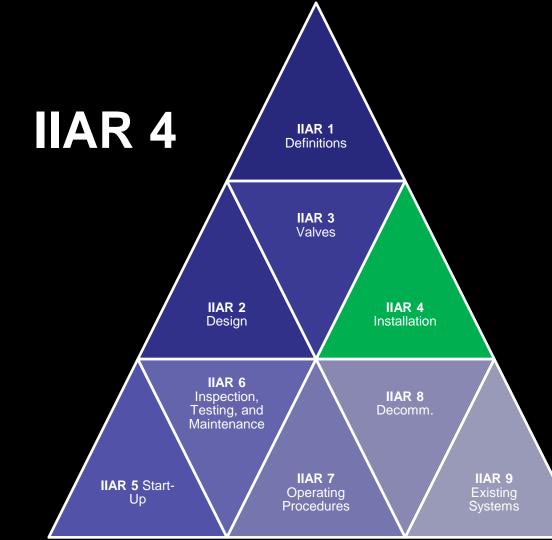
Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems


Providing Solutions. Simplifying Regulation.

IIAR Standard 2

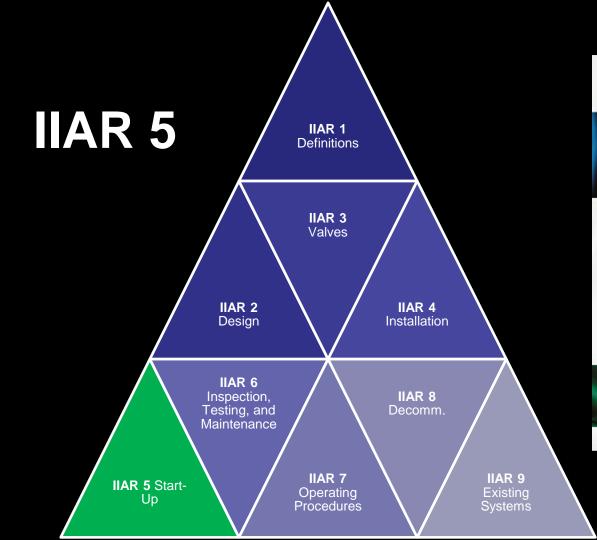
 ANSI/IIAR 2 Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems

1974-78	1984	1999	2008	2014	2021
C AMERICAN INTONU STANDARD FOR EQUIPMENT, DESIGN, AND INSTALLATION OF AMMONIA MECHANICAL REFRIGERATION SYSTEMS C C MINIMUM MINIMUM STANDARD MINIMUM STANDARD MINIMU		Australitation of Ammonia Machanical Refrigerating Systems		American National Siandard Siandard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems	ANSULAR 22/02 American National Standard Standard for Design of Safe Closed-Circuit Ammonia Refrigeration Systems



Standard for Ammonia Refrigeration Valves

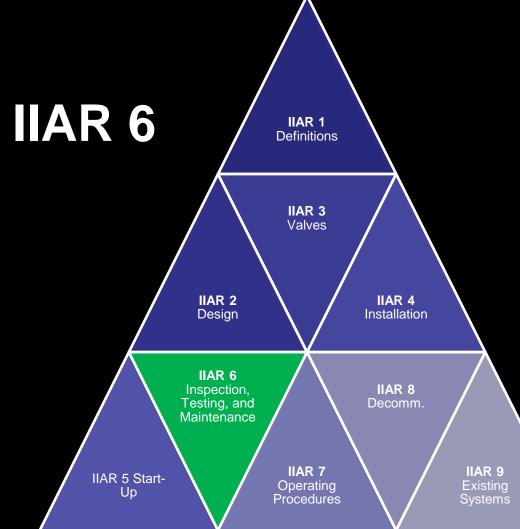
Approved by the American National Standards Institute June 30, 2017 Supersedes ANSI/IIAR 3-2012



American National Standard for Installation of Closed-Circuit Ammonia Refrigeration Systems

ANSI/IAR 4-2015

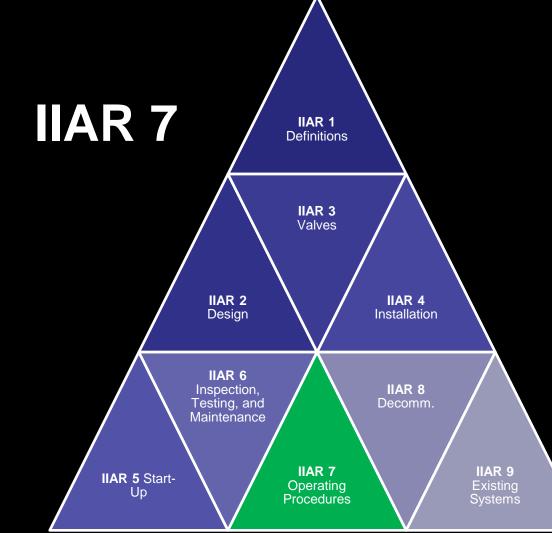
American National Standard


Standard for Start-up and Commissioning of Closed-Circuit Ammonia Refrigeration Systems

iiar

Approved by the American National Standards Institute July 31, 2013

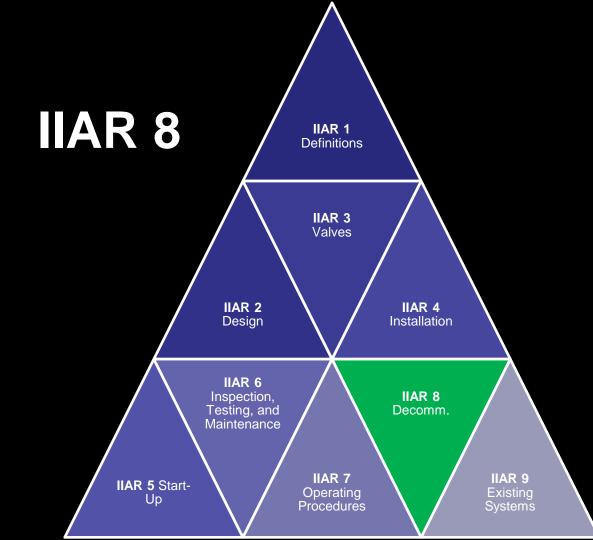
Category 1 - Pre-Charging: To be completed before ammonia is brought onsite							
Delete							
Category # 1 Category Name Pre-Charging: To be completed before ammonia	a is brought o	onsite					
Add new question Toggle Unanswered Show Questions							
+ 1. Has a startup team been organized to perform the startup of the new system or additions/modifications to an existing system? [ANSI/IIAR 5-2019 §5.1]	YES	NO	N/A				
+ 2. Has a startup plan been prepared? [ANSI/IIAR 5-2019 §5.2]	YES	NO	N/A				
+ 3. Has all system documentation from the planning, design, and installation phases of the project been assembled and readily available? [ANSI/IIAR 5-2019 §5.3]	YES	NO	N/A				
+ 4. For new facilities, has a Hazard Review or Process Hazard Analysis been performed? [ANSI/IIAR 5-2019 §5.4.1-5.4.2, 5.11.4]	YES	NO	N/A				
5. Have all Hazard Review or Process Hazard Analysis recommendations requiring closure prior to start-up been resolved? [ANSI/IIAR 5-2019 §5.4.1]	g YES	NO	N/A				



Frequencies

- D Daily
- W Weekly
- \circ M Monthly
- $\circ Q Quarterly$
- S Semiannual
- A Annual
- B Biennial,
- 3 Three Years

- 5 Five Years
- 10 Ten Years
- WA Where Applicable
- NA Not Applicable
- NR Not Required



ANSI/IAR 7-2013 American National Standard

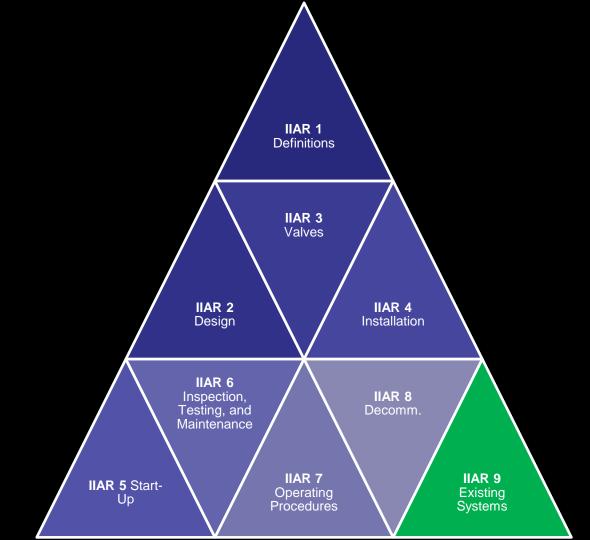
> Standard for Developing Operating Procedures for Closed-Circuit Ammonia Mechanical Refrigerating Systems

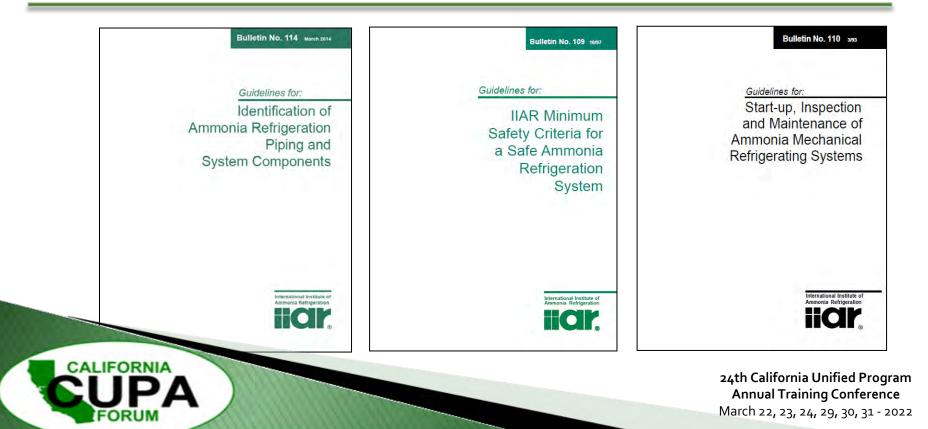
Approved by the American National Standards Institute August 21, 2013

American National Standard for

Ammonia Refrigeration

ANSI/IAR 8-2015


Decommissioning of Closed-Circuit Ammonia Refrigeration Systems


Approved by the American National Standards Institute January 26, 2015

 Category 1 - 	Preparation
----------------------------------	-------------

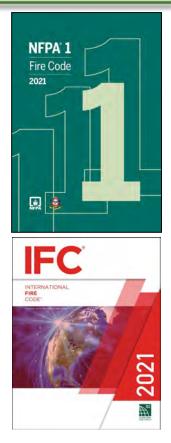
		Delete				
ategor	y # 1 Category Name Prep	paration				
	Add new question	Toggle Unanswered	Show Questions			
+	1. Has the reason or reasons that the sy decommissioned been clearly stated an §5.1.1.1]	•		YES	NO	N/A
+	2. Has a competent person been design decommissioning activities? [ANSI/IIAF		of all	YES	NO	N/A
+	3. Has an initial plan been developed fo [ANSI/IIAR 8-2015 §5.1.1]	r the decommissioning	activities?	YES	NO	N/A
+	4. Have documents relevant to the deco and made available to all necessary per [ANSI/IIAR 8-2015 §5.2.1]	-		YES	NO	N/A

IIAR Bulletins – Historical RAGAGEP

IIAR Literature - Bulletins

> IIAR Bulletin No. 110 §6.4.2 [emphasis mine]:

The system <u>should</u> be checked regularly for the presence of noncondensable gases which <u>should</u> be purged as necessary from the receiver(s) and/or condenser(s), <u>preferably</u> into a noncondensable gas remover or purger but <u>alternatively</u> into water. Where an automatic purger is fitted, its correct operation <u>should</u> be monitored. If there is a large accumulation of noncondensable gases the reason <u>should</u> be investigated and the cause <u>should</u> be corrected.


24th California Unified Program Annual Training Conference March 22, 23, 24, 29, 30, 31 - 2022

IIAR and Model Codes

• 2021 IFC §608.1.2 Ammonia refrigeration.

Refrigeration systems using ammonia refrigerant and the buildings in which such systems are installed shall comply with **IIAR 2** for system design; **IIAR 6** for inspection, testing and maintenance; and **IIAR 7** for operating procedures. Decommissioning of ammonia refrigeration systems shall comply with **IIAR 8**, and engineering practices for existing ammonia refrigeration systems shall be in accordance with **IIAR 9**.

 2021 NFPA 1 §53.1.3.2 Refrigeration systems using ammonia as the refrigerant shall comply with ANSI/IIAR 2... ANSI/IIAR 6...ANSI/IIAR 7...and ANSI/IIAR 9

IIAR and Model Codes

- 2021 UMC §1102.2 Ammonia Refrigeration Systems. Refrigeration systems using ammonia as the refrigerant shall comply with IIAR 2, IIAR 3, IIAR 4 and IIAR 5 and shall not be required to comply with this chapter.
- 2021 IMC §1101.1.2 Ammonia refrigerant. Refrigeration systems using ammonia as the refrigerant shall comply with IIAR 2, IIAR 3, IIAR 4 and IIAR 5 and shall not be required to comply with this chapter.

ANSI/IIAR 2-2021

Standard for Design of Safe Closed-Circuit Ammonia Refrigeration Systems

Overview

- Part 1 General (Chapters 1-3)
- Part 2 Design and Installation Considerations (Chapters 4-7)
- **Part 3** Equipment (Chapters 8-18)
- **Part 4** Appendices (Appendix A Appendix R)

Normative vs. Informative

Normative	Informative		
Parts 1-3 (Chapters 1-18)	Part 4 (Appendices)		
Prescriptive	Descriptive		
Required	Supplemental		
Shall	Should		
Must	Мау		
Will	Could/Can		

Scope [§1.2]

- Stationary closed-circuit vapor compression and absorption refrigeration systems utilizing anhydrous ammonia as the refrigerant shall comply with this standard. This standard shall not apply to:
 - 1. Replacement in-kind;
 - 2. Equipment and systems and the buildings or facilities in which they are installed that existed prior to the legal effective date of this standard. Such equipment, systems, and building and facilities shall remain in accordance with the codes and standards that applied at the time of installation or construction and in accordance with IIAR 9.

Alternative Materials and Methods [§1.3.2]

• Use of alternatives outside IIAR 2 are acceptable when approved and shown to be equivalent in quality, strength, effectiveness, durability, and safety.

Chapter 4

Part 2. Design and Installation Considerations Affecting Construction

Chapter 4. Chapter 4. Location of Ammonia Refrigeration

- 4.1 General. The location of anmonia refrigeration equipment shall comply with this chapter. Ammonia refrigeration equipment located in a machinery room complying with Chapter 6 or located outdoors in accordance with Section 4.2.2 shall be permitted in conjunction with a secondary coolant that serves any occupancy in accordance with Section 5.4.
- 4.2 *Permissible Equipment Locations. Ammonia refrigeration equipment shall be located in a machinery room that complies with Chapter 6 unless otherwise permitted by this section.
 - 4.2.1 Listed Equipment. Listed equipment containing not more than 6.6 ths. (3 kg) of annuonia and installed in accordance with the listing and the manufacturer's instructions shall be permitted in any occupancy without a makinery room. Listed equipment for use in laboratories with more than 100 fb (2 s m2) of floor area is permitted to contain any amount of annuonia if the equipment is installed in accordance with the listing and the manufacturer's installance.
 - 4.2.2 "Outdoor Installations. Animonia refrigeration equipment shall be permitted to be installed outdoors when installed in accordance with Sections 72.2, 72.4, 72.7, 72.10 and 7.3.2. Ammonia refrigeration equipment, other than piping, installed outdoors shall be located not less than 20 ft from building openings, except for openings to a machinery room or openings to an industrial occupancy complying with Section 7.2.

EXCEPTIONS:

- Packaged absorption or vapor compression systems for residential and commercial occupancies with refrigerant quantities not exceeding 22 lbs. (10 kg) are permitted to be installed within 20 ft of building openings.
- Packaged absorption or vapor compression systems with refrigerant quantities such that
 a complete discharge would not exceed a concentration of 300 ppm in any room or area
 in which the refrigerant could enter are permitted to be installed within 20 ft. of building
 openings. The calculation procedure shall be in accordance with Section 5.3.
- 4.2.3 *Industrial Occupancies. The following annuonia refrigeration equipment shall be permitted to be installed indoors in areas other than a machinery room in industrial occupancies complying with Chapter 7.
 - Heat exchangers and associated surge drums (if equipped) used for space cooling, space heating, space dehumidification, process cooling, or process heating;
 - 2. Low-probability pumps;
 - 3. Piping, including but not limited to control and pressure-relief valves;

ANSI/IAR 2 Standard for Design of Safe Closed-Circuit Ammonia Refrigeration Systems

- An ammonia refrigeration system with a total connected compressor drive power not exceeding 100 HP (74.6 kW).
- 4.2.4 "Public Assembly, Commercial, Residential, and Large Mercantle Occupancies. Where no prohibited by the AUJ annomia refriguration equipment shall be permitted outside of a machinery room for applications in a public assembly occupancy, commercial occupancy, or large mercantile occupancy. The quantity of ammonia shall be limited such that a complete discharge from any independent refrigerant circuit will not result in an ammonia concentration exceeding 300 ppm in any room or area where equipment orotationing animonia is located. The calculation procedure for determining the concentration level and Locapy with Section 5.3.

EXCEPTIONS:

- Listed packaged vapor compression or absorption systems, with no refrigerant-containing
 parts that are joined in the field by other than mating valves that permit sections of the
 system to be joined before opening the valves, installed in areas or rooms that are not
 public hallways or lobbies and with refrigerant quantities no greater than 6.6 lbs (3 kg)
 are permited for residential occupancies.
- Listed packaged space compression or absorption systems, with no refrigerant-containing
 parts that are jound in the field by other than mating values that permit sections of the
 system to be joined before opening the values, installed in a trass or rooms that are not
 public hallways or lobbies and with refrigerant quantities no greater than 22 lbs. (10 kg)
 are permited for commercial occupancies.
- Lited, sateld packaged vapor compression or absorption systems with no refrigerantcontaining parts that are joined in the field by other than mating valves that permit sections of the system to be joined before opening the valves, installed in public hallways or lobbies and with refrigerant quantities no greater than 3.3 lbs. (1.5 kg) are permitted for residential and commercial occupancies.

Providing Solutions. Simplifying Regulation.

Permissible Equipment Locations [§4.2]

Industrial Occupancies

0

Chapter 5

Ch	apter	5. General System Des	sign Requirements			
5.1	Gener	al. The design of closed-circuit ammonia refri	geration systems shall comply with this chapter.			
5.2	*Anhy	*Anhydrous Ammonia Specifications				
	.5.2.1	· · · · · · · · · · · · · · · · · · ·	initial and subsequent charging of ammonia pression shall meet the purity requirements show			
		Table 5.2.12 Purity Requirement				
		Ammonia Content	99.5% minimum			
		Ammonia Content	99.5% minimum 50 ppm minimum			
		Ammonia Content Water	99.5% minimum 50 ppm minimum 5,000 ppm maximum			

System Design Pressure [§5.5]

Important Section – Referenced in most future chapters

General [§5.5.1]

•Allowance for Pressure-Limiting and Pressure-Relief Devices [5.5.1.1]

- •Equipment Connected to a Pressure Vessel [5.5.1.2]
- •Piping Connected to a Pressure Vessel [5.5.1.3]
- •Compressors Used as Boosters [5.5.1.4]
- •Connecting to Existing Low-Pressure Equipment [5.5.1.5]

Minimum Permissible Design Pressure [§5.5.3]

Examples

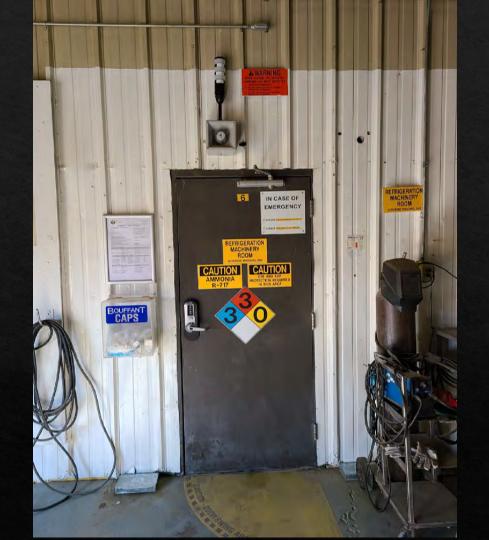
Location	1% Wet Bulb	1% Dry Bulb	Minimum Design Pressure Low- Side	Minimum Design Pressure High-Side (Water Cooled)	Minimum Design Pressure High-Side (Evap Cooled)	Minimum Design Pressure High Side (Air- Cooled)
Fresno, CA	69.3	100.8	247 psig 250 psig	212 psig 250 psig	212 psig 250 psig	330 psig 300 psig
Yuma, AZ	72.8	108.8	282 psig 250 psig	228 psig 250 psig	228 psig 250 psig	375 psig 300 psig

Materials [§5.7]

- Must be suitable at the temperature and pressure which the system will be subjected [§5.7.1.1]
- Must not deteriorate because of ammonia or oil [§5.7.1.2]
- Metallic materials must comply with ASME B31.5 or ASME B&PVC Section VIII [§5.7.2.1]
- Zinc, copper, and copper alloys must not be used [§5.7.2.2]
- Nonmetallic materials are permitted in accordance with §5.7.1, ASME B31.5 and ASME B&BVC Section VIII, Division 1 [§5.7.3]

Providing Solutions. Simplifying Regulation.

Materials [§5.7]



Signage, Labels, and Pipe Marking [§5.14]

- System Signage
- NFPA 704 Placards
- Equipment Labels
- Emergency Shut-Off Valve Identification and Tagging
- Nameplates

Eyewash/Safety Shower [§6.7]

- §6.7.1 Inside Machinery Room
- §6.7.2 Outside Machinery Room
- §6.7.3 Installation Standard

Lighting [§6.11]

- §6.11.1 General. Machinery rooms shall be equipped with light fixtures delivering a minimum of 30 footcandles (320 lumens/m²) at the working level, 36 in. (0.91 m) above a floor or platform.
- **§6.11.2 Light Control**. A manual control for the illumination source shall be provided. Occupancy sensors shall be permitted as an additional control for lighting, but not in lieu of a manual control.

Emergency Control Switches [§6.12]

§6.12.1 Emergency Stop Switch. A clearly identified emergency shut-off switch shall be located outside and adjacent to the designated principal machinery room door. The switch shall provide off-only control of refrigerant compressors, refrigerant pumps, and normally closed automatic refrigerant valves that are not part of an emergency control system, located in the machinery room. The function of the switch shall be clearly marked by signage near the controls. The switch shall be readily operable and protected from inadvertent operation and require manual reset.

Emergency Control Switches [§6.12]

§6.12.2 Emergency Ventilation Control Switch. A clearly identified control switch for emergency ventilation that is not operated continuously shall be located outside the machinery room and adjacent to the designated principal machinery room door. The switch shall provide "ON/AUTO" override capability for emergency ventilation. The function of the switch shall be clearly marked by signage near the controls. The switch shall be readily operable.

- §6.13.1 General.
 - 1. At least two detectors having identical sensing ranges.
 - 2. Audible/visual alarms inside the room and outside each entrance to the room.

- §6.13.2 Alarm Response
 - 6.13.2.1 Detection of ammonia concentrations less than 25 ppm requires no alarm.
 - 6.13.2.2 *Detection of ammonia concentrations equal to or exceeding 25 ppm shall activate visual indicators and audible alarms as specified in Section 6.13.1. The visual indicator and audible alarm shall be permitted to automatically reset if the ammonia concentration drops below 25 ppm.
 - A.6.13.2.2 Visual alarms can be provided by strobes or other distinctive visual signaling devices.

§6.13.2 Alarm Response

6.13.2.3 Detection of ammonia concentrations 0 equal to or exceeding 150 ppm (1/2 IDLH) shall activate visual indicators and an audible alarm and shall activate emergency ventilation, where such is required in accordance with Section 6.14. 7. Once activated, emergency ventilation, and visual indicators shall continue to operate until manually reset by a switch located in the machinery room. Audible alarms shall continue to operate until they are manually reset by a switch located in the machinery room or alternatively in an area remote from the machinery room.

• §6.13.2 Alarm Response

- 6.13.2.4 Detection of ammonia concentrations that exceed a detector's upper detection limit or 40,000 ppm (25% LFL), whichever is lower, shall activate visual indicators and an audible alarm and shall activate emergency ventilation where such is required in accordance with Section 6.14. 7. If the detectors within the machinery room have more than one sensing range the detector with the highest range of detection capability is permitted to be used to activate this alarm response. Once activated, emergency ventilation, and visual indicators shall continue to operate until being manually reset by a switch located in the machinery room. Audible alarms shall continue to operate until they are manually reset by a switch located in the machinery room or alternatively in an area remote from the machinery room. In addition, the following equipment in the machinery room shall be automatically de-energized and shall remain de-energized until being manually reset:
 - 1. Refrigerant compressors.
 - o 2. Refrigerant pumps.
 - o 3. Normally closed automatic refrigerant valves that are not part of an emergency control system.

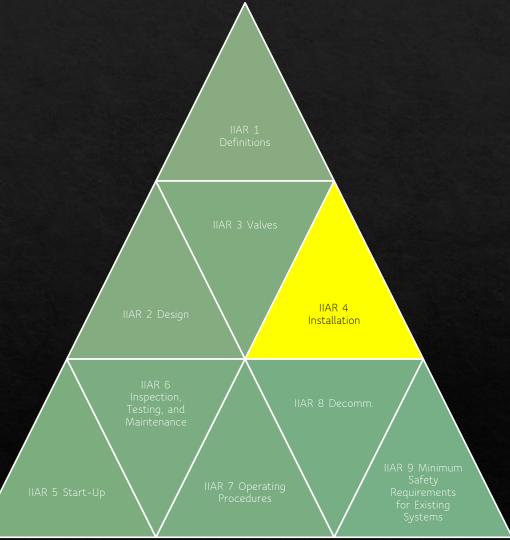
Ventilation [§6.14]

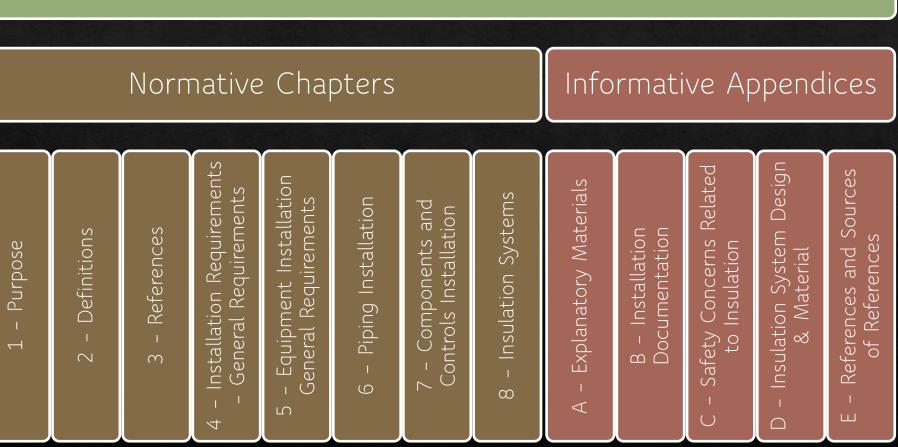
§6.14.7 Emergency Ventilation

• 30 ACH is the required airflow

$$Q\left[\frac{ft^3}{min}, cfm\right] = \frac{V[ft^3] \times 30}{1 hr} \times \frac{1 hr}{60 min} = 0.5 \times V[ft^3]$$

General [§7.2.10]


Eyewash/Safety Shower/Supplemental Drenching/Flushing. A permanent or portable means shall be provided for the provision of quick drenching or flushing of the eyes and body within or directly adjacent to the work area for immediate emergency use when maintenance occurs that involves the deliberate opening of an ammonia refrigeration system. Such means shall be indicated in the design documents, and shall comply with the temperature, flow and duration specifications of ANSI/ISEA Z358. I.


ANSI/IIAR 4-2020

Installation of Closed-Circuit Ammonia Refrigeration

Systems

Standard 4

IIAR 4

Chapter 1: Purpose

♦§1.1 Purpose

This standard specifies minimum requirements for the installation of safe closed-circuit ammonia refrigeration systems

4.2 – Installer Qualifications

- Installation shall be accomplished by individuals that can <u>safely</u> receive/transport/ assemble/install the components of a refrigeration system.
- Installing contractors shall provide the owner with documentation of employees' and subcontractor employee qualifications (certifications, training, etc.)
- Employees in training may still participate if they are directly supervised by a qualified employee.

4.3 – Safety Training

Prior to installation, applicable individuals shall be provided with an orientation on safety procedures by the owner and installer.

♦ This should include:

- ♦ Safety rules of the facility
- ♦ Required safe work practices
- ♦ PPE requirements and usage

4.5 – Welding of Pressure-Containing Components

- Welding must be performed in accordance with the following:
 - ♦ ASME B&PVC, Section VIII-IX (2019)
 - ♦ ASME B31.5 (2019)
 - ♦ Welding Process Specifications (WPS)
 - ♦ Procedure Qualification Record (PQR)
 - Welding and Welding Operator Performance
 Qualification Record (WPQR)

QW-484 SUGGESTED FORMAT FOR WELDER/WELDING OPERATOR PERFORMANCE QUALIFICATIONS (WPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

elder's name Clear	lock number	Stamp no	
siding process(es) used	1	Туре	
ntification of WPS followed by welder during welding of	test coupon		
e material(s) welded		Thickness	

Manual or Semiautomatic Variables for Each Process	QW-350}	Actual Values	Range Qualified
Backing (metal, weld metal, welded from both sides, flux, etc.) (C			
ASME P-No to ASME P-No. (QW-403)			
) Plate () Pipe (enter diameter, if pipe)			
iller metal specification (SFA): Classification	(QW-404)		
iller metal F-No.			
iller metal variety for GTAW, PAW (QW-404)			
onsumable insert for GTAW or PAW			
Veld deposit thickness for each welding process			
velding position (1G, 5G, etc.) (QW-405)			
rogression (uphill/downhill)			
acking gas for GTAW, PAW, or GMAW; fuel gas for OFW (QW-	(08)		
MAW transfer mode (QW-409)			
TAW welding current type/polarity			
		·	
Machine Welding Variables for the Process Used (Q	N-360)	Actual Values	Range Qualified
rect/remote visual control			Kange Quaimed
stomatic voltage control (GTAW)			
utomatic joint tracking			
elding position (1G, 5G, etc.)			
pnsumable insert			
scking (metal, weld metal, welded from both sides, flux, etc.)			QW-462.3(b) (Long, R & F) Results
Guide	d Bend Test Results		
Guided Bend Tests Type () QW-462.2 (Side) Resul		2.3(a) (Trans. R & F) Type 🛛 🔇 👌	QW-462.3(b) (Long, R & F) Results
examination results (QW-302.4)			

graphic test results (QW-304 and QW-305)
ternative qualification of groove welds by radiography)
Veld — Fracture test Length and percent of defects in.
test fusion Fillet leg size in. × in. Concevity/convexity in.
g test conducted by
nical tests conducted by Laboratory test no
tify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with the requirements
ion IX of the ASME Code.

Organization

This form (E00008) may be obtained from the Order Dept., ASME, 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300.

GEOTECHNICAL & ENVIRONMENTAL ENGINEERING ~ CONSTRUCTION TESTING & INSPECTION

WELDER QUALIFICATION TEST RECORD (WQTR) (Section IX, QW-484, ASME Boller and Pressure Vessel Code)

Date:	November 14, 2016	Test #	QW-463.2(d)	Job #	160942
To:	CCA	WPS #	CCA-G6-2.375A	Code:	ASME Section IX
	39138 Road 56	Witnessed by:	Brad A. Bosworth		
	Dinuba, CA 93618	Test Date		November 14	, 2016
Welder:	Rodrigo Herrera	Welders ID:		<u>B7</u>	

		Testing	Conditions and Rang	e Qualified			
	Welding Variables Welding Processes: Type of Welding, (Manual, semi-auto):		Actual Values SMAW Manual			Range Qualified	
Welding Proce					SMAW		
Type of Weldin						Manual	
(QW-403)	(QW-403)						
Base Metal, P	Base Metal, P number to P number:		F	P-1		P-1	
D Plate	🛛 Pipe (Pi	e Diameter):		2*		1" & above	
(QW-404)							
Filler Metal (Si	Filler Metal (SFA) Specifications Filler Classification: Filler Metal / F-Number: Consumable Insert: Weld Deposit Thickness:		A5.1	A5.1/A5.5		A5.1/A5.5 E6010/E6011 F3 N/A	
Filler Classific			E6010 F3 N/A .350"				
Filler Metal / F							
Consumable I							
Weld Deposit					.350"700"		
(QW-405)							
Welding Positi	Welding Position: Progression: Backing:		6G Downhill None		All Downhill None		
Progression:							
Backing:							
Guide Bend Test							
Visual Examin	ation of Complet	ed Joint:	1. C.		Dat	e of Test:	
🔲 Mechanical	D Pe	el (QB-462.3)	Section (QB-462.4 0		Tension (QB-462.1 (e)		
Root Bend	Face Bend	Root Bend	Face Bend				

PASS We, the undersigned, certify that the statements in this record are correct and that the tests were prepared, weided, and tested in accordance with the requirements of Section IX, ASME Boiler and Pressure Vessel Code.

PASS

PASS

PASS

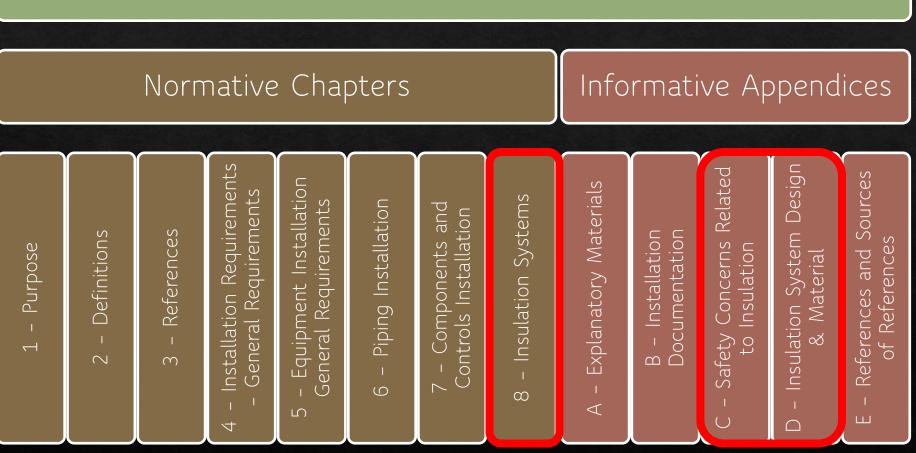
Interpreted By:	Brad A. Bosworth		WI STAMP Brad A Bosworth	Lab Test Number	5451
Organization:		AHS>	CWI 92030091	Date:	November 14, 2016
Manufacture Or Contractor:	California Controlled Atmosphere	V	QC1 EXP. 3/1/20	Certified By:	\mathcal{A}
Authorized by:		Date:		CWI Number:	92030091

CORPORATE OFFICE ~ 4539 N. Brawley Avenue #108, Fresno, CA 93722 ~ P 559.276.9311 ~ F 559.276.9344 VISALIA OFFICE - 151 S. Dunworth Avenue, Visalia, CA 93292 - P 559.732.0200 - F 559.732.0830 MERCED OFFICE - 2345 Jetway Drive, Atwater, CA 95301 - P 209.384.9300 - F 209.384.0891 www.technicon.net

8-39

Chapter 6: Piping Installation

♦§6.1 General


- ♦ §6.2 Pipe and Tubing
- ♦ §6.3 Refrigerant Valves
- ♦ §6.4 Piping Fabrication and Assembly
- ♦§6.5 Flanges
- ♦ §6.6 Threaded Joints
- ♦ §6.7 Welded Joints

7.1 – Visual Liquid Level Indicators

Visual liquid level indicators shall be:

- ♦ Inspected prior to installation.
 - Where a scratch, chip or defect is found, the liquid level indicator shall not be installed.
- Installed in accordance with the manufacturer's instructions.
- Equipped with gaskets recommended by the manufacturer.

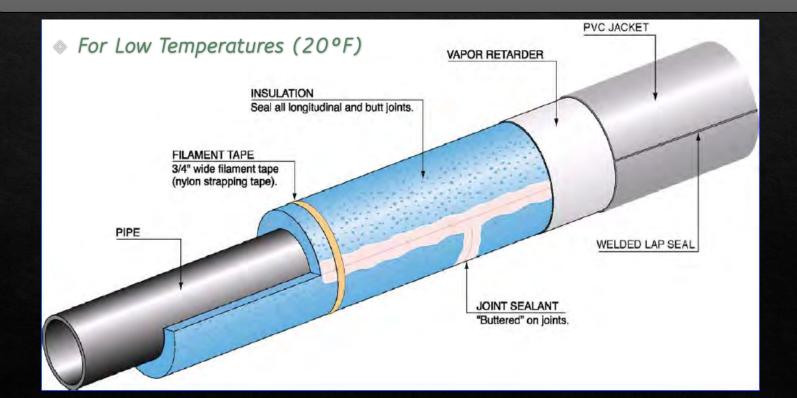
IIAR 4

Chapter 8: Insulation Systems

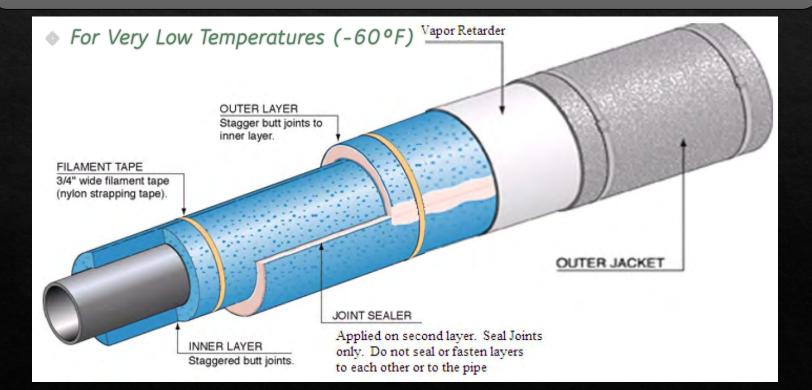
♦§8.1 General

8.1 – General

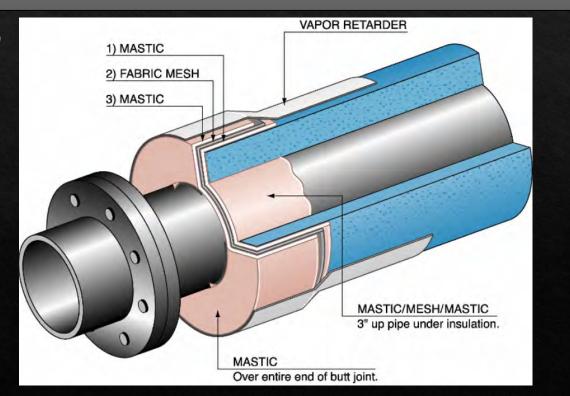
Delivery


 Insulation materials shall be delivered to the job site in clean, marked, and previously unused containers.

Storage


 Insulation materials shall be stored indoors, or in closed containers to prevent environmental factors from damaging the materials.

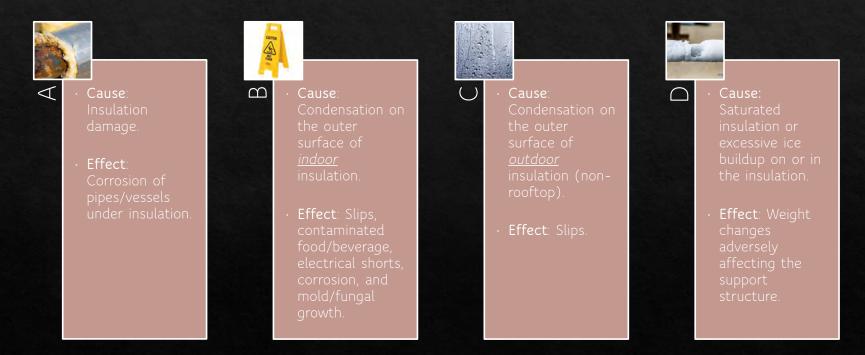
Insulation Materials



Insulation Materials

Insulation Materials

♦ Vapor Stop



Insulation Materials – Corrosion Inhibiting Gel

Appendix C: Safety Concerns Related to Insulation

Appendix C: Safety Concerns Related to Insulation

♦ Commonality: Water collecting in or on the insulation system.

Overview of ANSI/IIAR 6-2019

Standard for Inspection, Testing, and Maintenance of Closed-Circuit Ammonia Refrigeration Systems

Presented by: Peter Thomas, P.E.

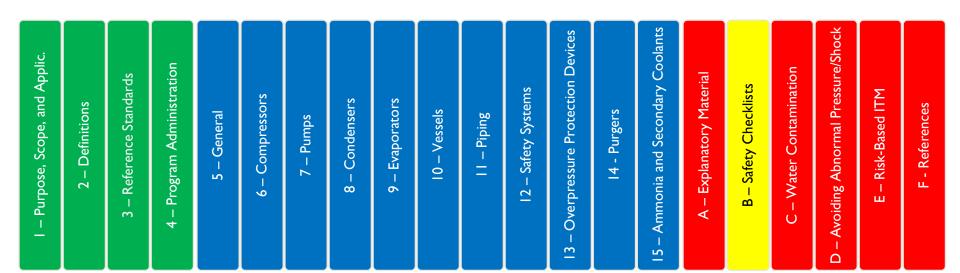
IIAR 6

Part 2 – Program Requirement

Part 3 Appendices

l – Purpose, Scope, and Applic.	2 – Definitions	3 – Reference Standards	4 – Program Administration	5 – General	6 – Compressors	7 – Pumps	8 – Condensers	9 – Evaporators	10 – Vessels	l I – Piping	l 2 – Safety Systems	3 – Overpressure Protection Devices	14 - Purgers	5 – Ammonia and Secondary Coolants	A – Explanatory Material	B – Safety Checklists	C – Water Contamination) – Avoiding Abnormal Pressure/Shock	E – Risk-Based ITM	F - References

Compliance Schedule [§4.1.3]


An owner shall be in compliance with this standard when it is adopted by the authority having jurisdiction (AHJ) or when it is adopted by the owner, whichever is first.

IIAR 6

Part 2 – Program Requirement

Part 3 Appendices

International In Ammonia Refri	
	1
	0

Ammonia Refrigeration Safety Inspection Checklist

		AIR-CO	OLING EVAPORATORS
lant Owner:			1.17.17.01.000.12
ddress:			
Contact:		Telephone:	
ispector;		Date	
Air Cooling Evapor	ators		
Ir Cooling Evaporator Loc			
Ir Cooling Identification M	ark/No.:		
Application		Type of Refrigerant Fe	ed
Blast Freezer	Storage Freezer	Liquid Recirculation	Dry Expansion (DX)
Process Room	Dock	Elooded (Surge Drum)	
Storage Cooler		Other (Describe):	
1 Juli age Cooler		C) Onlier (Evenselinee).	
Other (<i>Describe</i>):			
Other (Describe):	☐ carbon steel ☐ stainless steel 〕 Water ☐ hot gas ☐ other	_	
Other (Describe): Application Data ube and Fin Material: [kelfost Type:]air [water hot gas other	_	(*F):
) Other (Describe): pplication Data ube and Fin Materiai: efrost Type:air esign Room Air Temperat	water hot gas other	aluminum	
Other (Describe):	water hot gas other	aluminum Normal Retrigerant Temperature Design Air Flow (CFM):	
Other (Describe): pplication Data use and Fin Material: effost Type:ar esign Room Air Temperat esign Capacity (<i>TR</i>): stal Internal Vol. (cubic ff)	water hot gas other	aluminum Normal Refigerant Temperature Design Air Flow (CFM):	
Otter (Describe):	water hot gas other	aluminum Normal Refigerant Temperature Design Air Flow (CFM):	
Other (Desembe): pplication Data use and Fin Material: effost Type: air esign Room Air Temperat esign Capacity (<i>TR</i>): tai Internal Vol. (<i>cubc: ft</i>): ormal Ammonia Inventory irr Cooling Evapor	water hot gas other ure (*); (VolumerWeight): cubic ft: ator Nameplate Data	aluminum Normal Refigerant Temperature Design Air Flow (CFM):	
Other (Describe):	water hot gas other ure (*); (Volume/Weight): cubic ft: ator Nameplate Data	aluminum Normal Refigerant Temperature Design Air Flow (CFM):	
Other (Describe):	water hot gas other ure (*7): (Volume/Weight): cubic fit: ator Nameplate Data el, Senal No.:	aluminum Normal Refrigerant Temperature Design Air Flow (CFM):	
Otter (Describe):	water hot gas other ure (*7): (Volume/Weight): cubic fit: ator Nameplate Data el, Senal No.:	aluminum Normal Refrigerant Temperature Design Air Flow (CFM):	

	Ammonia	0	and a second	
		AIR-COOLING	EVAPORATO	R
Location: Facility Owner:			D/	Tag No.:
Address: Contact:			Pho	ne:
Inspector:	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Dat	e:
Application:	Type of Ref	rigerant Feed:		
Blast Freezer		🖸	Liquid Recirculatio	on (Top Feed)
Storage Freeze	r		Liquid Recirculation	on (Bottom Feed) 🗌
Storage Cooler			Flooded (Surge Dr	um)
Dock		- 🔲	Direct Expansion (DX)
Process Room			Ammonia Absorpti	ion System
Other (Decemb	e)		Other (Decembe)	
	20	-		
nipment Data and L	20	- Model:		
nipment Data and I mufactwer:	20	-		Serial Number:
nipment Data and I mufactwer: ar Manufactwed:	20	-	Design Pressure (ps	Serial Number:
nipment Data and I mufacturer: ar Manufactured: om Air Temp (°F):	.inits:	Model:	Design Pressure (ps	Serial Number:
aipment Data and I	.init::	Model:	Design Pressure (ps Suction (psig / I Ammonia Inventory (Ib	Serial Number:
aipment Data and I mufacturer: ar Manufactured: om Air Temp (°F): tal Internal Vol: be and Fin Material:	.init::	Cu. Ft. Norma	Design Pressure (ps Suction (psig / I Ammonia Inventory (Ib	Serial Number:
nipment Data and I mufacturer: ar Manufactured: om Air Temp (°F): tal Internal Vol:	imit::	Cu. Ft. Norma	Design Pressure (ps Suction (psig / l Ammonia Inventory (lb Aluminum,	Serial Number:
aipment Data and I mufacturer: ar Manufactured: om Air Temp (°F): tal Internal Vol: be and Fin Material: frost Type: a Motor Data:	imit::	Cu. Ft. Norma	Design Pressure (p Suction (psig / I Ammonia Inventory (lb Aluminum, Hot Gas, Oth	Serial Number: ig):/ FF):/ Stainless tube/Aluminum Fin er:
nipment Data and I mufacturer: ar Manufactured: om Air Temp (°F): tal Internal Vol: be and Fin Material: frost Type:	imit::	Cu. Ft. Norma	Design Pressure (p Suction (psig / I Ammonia Inventory (lb Aluminum, Hot Gas, Oth	Senal Number:

wight @2019 International Institute of Ammonia Refrigeration All Rights Reserved

MINIMUM SAFETY CRITERIA FOR A SAFE AMMONIA REFRIGERATION SYSTEM

Requirement/Recommendation	Conforms	Recommended Action/Comments	Safety Status	Targe Date
a) Nameplate legible & complete?	🗌 Yes 🗌 No			1.0
b) Suitable for ammonia?	🗌 Yes 🗌 No	f		
c) Operation within limits?	🗆 Yes 🗌 No			
d) Adequately anchored and supported?	🗌 Yes 🗌 No			
e) Safe access for service & maintenance?	🗆 Yes 🗌 No			
f) Free from excessive vibration?	🗌 Yes 🔄 No			
g) Adequate protection against traffic hazards?	Yes No			
h) Evaporator free from excessive ice buildup and clean of dirt?	🗌 Yes 🗌 No			
 Drive properly guarded & protected? 	Ves 🗆 No	les en areas		

í ýes, describe.								
				-				
			5 5 5	-				

Location:		R-COOLING EV	1000	ID/Tag No.:	1.11
	Inspection Items	Conforms	Safety Status	Recommended Action, or Comments	Targe
	Equipment labeled and nameplate legible per ANSI/IIAR 2?	Yes No N/A	Cintas	or comments	
	Suitable for ammonia?	Yes No N/A	1		
c) (Operating within limits?	Yes No N/A			
	Fasteners tight, adequately anchored, and supported?	Yes No N/A	-		: 1:::::
	Safe access for Inspection, Testing and Maintenance (ITM)?	Yes 🗌 No 🗌 N/Å 🗌			
f)]	Free of excessive ice buildup?	Yes 🗌 No 🗌 N/A 🗌			1.000
g)	Free of abnormal sounds/vibration?	Yes No N/A	5 - 1 -		-
h)]	Free of ammonia leaks?	Yes No N/A	12.00		
	All piping has markers per ANSI/IIAR 2?	Yes No N/A			1.1
j) .	Are valves in good condition?	Yes No N/A	12		
1	Are critical manual and control valves tagged, exercised, and stems lubricated?	Yes 🗋 No 🗋 N/A 🗋			
1	Sufficient pressure/temperature gauges and/or transducers are present and functioning adequately?	Yes 🗌 No 🗌 N/A 🗌			
m) 	Belts, sheaves, coupling, etc., in good working order and adequately guarded?	Yes 🗌 No 🗌 N/A 🗌			
1	Free of pitting and surface damage and coils free of dirt? a. If No. note damage level:	Yes No N/A Slight Extensive			
o)]	Free of any other conditions that negatively affect safe operation?	Yes 🗌 No 🗌 N/A 🗌			1 1

IIAR Bulletin No. 109

IIAR Standard 6

Requirement/Recommendation	Conforms	Recommended Action/Comments	Safety Status	Target Date
a) Nameplate legible & complete?	🗌 Yes 🗌 No			1.
b) Suitable for ammonia?	🗌 Yes 🗌 No	f		
c) Operation within limits?	🗌 Yes 🗌 No		1	
d) Adequately anchored and supported?	🗌 Yes 🗌 No			
e) Safe access for service & maintenance?	🗆 Yes 🗌 No			
f) Free from excessive vibration?	🗌 Yes 🔄 No	d i		· · · ·
g) Adequate protection against traffic hazards?	Yes No	17 gr		1
h) Evaporator free from excessive ice buildup and clean of dirt?	🗌 Yes 🗌 No			
 Drive property guarded & protected? 	Ves No	3		

Are there any other conditions that n	night riegatively affe	ect safe evaporator	operation?	🗆 Yes	🗆 No			
If yes, describe.								
					_		_	
			-				-	-
						-	_	

Location:	10.2 J 10.0 10 88.00	0.227	ID/Tag No.:	1.1
Inspection Items	Conforms	Safety Status	Recommended Action, or Comments	Targe
 a) Equipment labeled and nameplate legible per ANSI/IIAR 2? 	Yes 🗌 No 🗌 N/A 🗌			
b) Suitable for ammonia?	Yes No NA	1		1
c) Operating within limits?	Yes No N/A			
d) Fasteners tight, adequately anchored, and supported?	Yes No N/A			1 1
e) Safe access for Inspection, Testing and Maintenance (ITM)?	Yes 🗌 No 🗌 N/A 🗌			
f) Free of excessive ice buildup?	Yes 🗌 No 🗌 N/A 🗌			1.000
g) Free of abnormal sounds/vibration?	Yes No N/A	- i - i - i		
h) Free of ammonia leaks?	Yes No N/A	12.00		
All piping has markers per ANSI/IIAR 2?	Yes 🗋 No 🗋 N/A 🗌	12.21		1.1
j) Are valves in good condition?	Yes No N/A	12		
k) Are critical manual and control valves tagged, exercised, and stems lubricated?	Yes 🗋 No 🗋 N/A 🗋			
 Sufficient pressure/temperature gauges and/or transducers are present and functioning adequately? 	Yes 🗌 No 🗌 N/A 🗌			
m) Belts, sheaves, coupling, etc., in good working order and adequately guarded?	Yes 🗌 No 🗌 N/A 🗌			
 n) Free of pitting and surface damage and coils free of dirt? a. If No. note damage level: 	Yes No N/A Slight Extensive			
 a) Free of any other conditions that negatively affect safe operation? 	Yes 🗌 No 🗌 N/A 🗌			1 1 4
				9

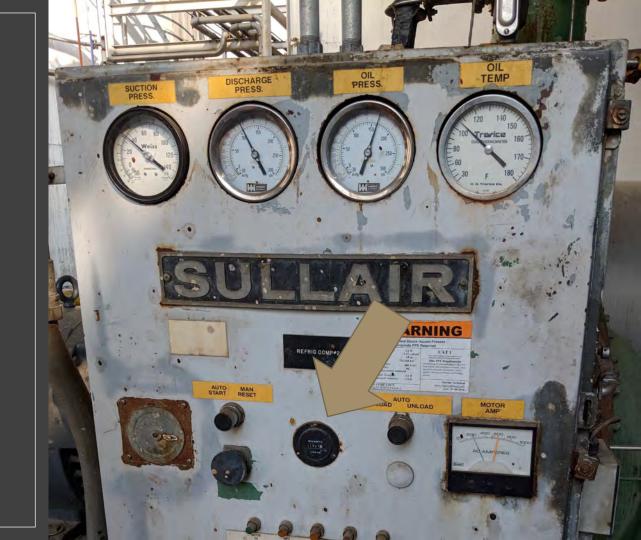
IIAR Bulletin No. 109

IIAR Standard 6

and Maintenance (ITM)?	
f) Free of excessive ice buildup?	Yes No N/A
g) Free of abnormal sounds/vibration?	Yes No N/A
h) Free of ammonia leaks?	Yes No N/A
All piping has markers per ANSI/IIAR 2?	Yes No N/A
j) Are valves in good condition?	Yes No N/A
k) Are critical manual and control valves tagged, exercised, and stems lubricated?	Yes No N/A
 Sufficient pressure/temperature gauges and/or transducers are present and functioning adequately? 	Yes 🗋 No 🗋 N/A 🛄
m) Belts, sheaves, coupling, etc., in good working order and adequately	Yes 🗋 No 🗋 N/A 🗍

Period	Calendar Basis	Runtime Basis (hours)
Daily	Occurring once per 24 hours.	24
Weekly	Occurring once per calendar week.	168
Monthly	Occurring once per calendar month.	730
Quarterly	Occurring four times per year. The minimum period between ITM tasks is 2 months. The maximum is 4 months.	2,190
Semiannual	Occurring twice per 12 consecutive months. The minimum period between ITM tasks is 4 months. The maximum is 8 months.	4,380
Annual	Occurring once per year. The minimum period between ITM tasks is 9 months. The maximum is 15 months.	8,760
Biennial (Two Years)	Occurring once every other year. The minimum period between ITM tasks is 21 months. The maximum is 27 months.	17,520
Three Years	Occurring once every 36 months. The minimum period between ITM tasks is 30 months. The maximum is 42 months.	26,280
Five Years	Occurring once every 60 months. The minimum period between ITM tasks is 54 months. The maximum is 66 months.	43,800
Ten Years	Occurring once every 120 months. The minimum period between ITM tasks is 108 months. The maximum is 132 months.	87,600

per 24 hours. per calendar week. per calendar month. imes per year. The minimum period between ITM s. The maximum is 4 months.	24 168 730 2,190
per calendar month. imes per year. The minimum period between ITM	730
imes per year. The minimum period between ITM	
	2 190
	2,170
per 12 consecutive months. The minimum period ks is 4 months. The maximum is 8 months.	4,380
	8,760
	17,520
, , , , , , , , , , , , , , , , , , , ,	26,280
• •	43,800
, , , , , , , , , , , , , , , , , , , ,	87,600
	sks is 4 months. The maximum is 8 months. per year. The minimum period between ITM tasks is maximum is 15 months. every other year. The minimum period between ITM hs. The maximum is 27 months. every 36 months. The minimum period between ITM hs. The maximum is 42 months. every 60 months. The minimum period between ITM hs. The maximum is 66 months. every 120 months. The minimum period between months. The maximum is 132 months.


ITM Task Description		Frequency		ITM Task	Frequency		
Inspection	Screw	Recip	Rotary Vane	Inspection	Screw	Recip	Rotary Vane
a) Runtime hours	WA-D	WA-D	WA-D	q) Drive guard in place	D	D	D
b) Suction pressure	D	D	D	r) Foundation solid, in place, and free from evidence of deterioration	А	А	А
c) Discharge pressure	D	D	D	s) Visually inspect mounting bolts are	A	A	A
d) Oil pressure	D	D	D	in place		,,	
e) Oil temperature	D	WA-D	D	t) Visually inspect metal surfaces for pitting or surface damage	А	A	А
f) Discharge temperature	D	WA-D	D	u) Visually inspect coupling for wear	А	WA-A	WA-A
g) Verify oil levels are adequate	D	D	D	v) Visually inspect starter connections	А	А	А
h) Oil filter differential pressure	D	WA-D	NA	and associated timers and relays			
i) Oil leaks	D	D	D	w) Operation of oil heaters	А	A	A
j) Lubricator oil level and drip rate	NA	NA	D	x) Operation of unloader	М	М	М
k) Jacket cooling oil level	NA	NA	D	y) Visually inspect alignment of compressor-motor drive shaft	A	A	A
I) Determine shaft seal leak rate	WA-W	WA-W	WA-W	Testing	Screw	Recip	Rotary Vane
m) Indicator of Compressor Capacity	D	WA-D	WA-D	Test safety shutdowns:			
n) Motor amperage (current)	D	WA-D	WA-D	a) Low suction pressure cutout	А	А	А
o) Recorded Alarms and Shutdowns	D	WA-D	WA-D	b) High discharge pressure cutout	А	А	А
 p) Free from abnormal sounds and excessive vibration 	D	D	D	_ (HPCO) See Section 6.1.1			

ITM Task Description		Frequency		ITM Task	Frequency		
Inspection	Screw	Recip	Rotary Vane	Inspection		Recip	Rotary Vane
a) Runtime hours	WA-D	WA-D	WA-D	q) Drive guard in place	D	D	D
b) Suction pressure	D	D	D	r) Foundation solid, in place, and free from evidence of deterioration	A	A	A
c) Discharge pressure	D	D	D	s) Visually inspect mounting bolts are	А	А	А
d) Oil pressure	D	D	D	in place			
e) Oil temperature	D	WA-D	D	D t) Visually inspect metal surfaces for pitting or surface damage		A	А
f) Discharge temperature	D	WA-D	D	u) Visually inspect coupling for wear	А	WA-A	WA-A
g) Verify oil levels are adequate	D	D	D	v) Visually inspect starter connections		А	А
h) Oil filter differential pressure	D	WA-D	NA	and associated timers and relays			
i) Oil leaks	D	D	D	w) Operation of oil heaters	A	A	A
j) Lubricator oil level and drip rate	NA	NA	D	x) Operation of unloader	М	М	М
k) Jacket cooling oil level	NA	NA	D	y) Visually inspect alignment of compressor-motor drive shaft		A	A
I) Determine shaft seal leak rate	WA-W	WA-W	WA-W	Testing	Screw	Recip	Rotary Vane
m) Indicator of Compressor Capacity	D	WA-D	WA-D	Test safety shutdowns:			
n) Motor amperage (current)	D	WA-D	WA-D	a) Low suction pressure cutout	А	А	А
o) Recorded Alarms and Shutdowns	D	WA-D	WA-D	b) High discharge pressure cutout	А	А	A
 p) Free from abnormal sounds and excessive vibration 	D	D	D	(HPCO)			

ITM Task Description		Frequency		ITM Task	Frequency		
Inspection	Screw	Recip	Rotary Vane	Inspection	Screw	Recip	Rotary Vane
a) Runtime hours	WA-D	WA-D	WA-D	q) Drive guard in place	D	D	D
b) Suction pressure	D	D	D	r) Foundation solid, in place, and free from evidence of deterioration	А	А	А
c) Discharge pressure	D	D	D	s) Visually inspect mounting bolts are	А	A	А
d) Oil pressure	D	D	D	s) Visually inspect mounting bolts are in place			
e) Oil temperature	D	WA-D	D	t) Visually inspect metal surfaces for pitting or surface damage		A	А
f) Discharge temperature	D	WA-D	D	u) Visually inspect coupling for wear	А	WA-A	WA-A
g) Verify oil levels are adequate	D	D	D	v) Visually inspect starter connections	А	А	А
h) Oil filter differential pressure	D	WA-D	NA	and associated timers and relays			
i) Oil leaks	D	D	D	w) Operation of oil heaters	A	A	А
j) Lubricator oil level and drip rate	NA	NA	D	x) Operation of unloader	М	М	М
k) Jacket cooling oil level	NA	NA	D	y) Visually inspect alignment of compressor-motor drive shaft	A	A	A
I) Determine shaft seal leak rate	WA-W	WA-W	WA-W	Testing	Screw	Recip	Rotary Vane
m) Indicator of Compressor Capacity	D	WA-D	WA-D	Test safety shutdowns:			
n) Motor amperage (current)	D	WA-D	WA-D	a) Low suction pressure cutout	А	А	А
o) Recorded Alarms and Shutdowns	D	WA-D	WA-D	b) High discharge pressure cutout	А	А	А
 p) Free from abnormal sounds and excessive vibration 	D	D	D	(HPCO) See Section 6.1.1			

ITM Task Description		Frequency		ITM Task	Frequency		
Inspection	Screw	Recip	Rotary Vane	Inspection	Screw	Recip	Rotary Vane
a) Runtime hours	WA-D	WA-D	WA-D	q) Drive guard in place	D	D	D
b) Suction pressure	D	D	D	r) Foundation solid, in place, and free from evidence of deterioration	А	А	А
c) Discharge pressure	D	D	D	s) Visually inspect mounting bolts are	A	A	A
d) Oil pressure	D	D	D	in place		,,	
e) Oil temperature	D	WA-D	D	t) Visually inspect metal surfaces for pitting or surface damage	A	A	А
f) Discharge temperature	D	WA-D	D	u) Visually inspect coupling for wear	А	WA-A	WA-A
g) Verify oil levels are adequate	D	D	D	v) Visually inspect starter connections	А	А	А
h) Oil filter differential pressure	D	WA-D	NA	and associated timers and relays			
i) Oil leaks	D	D	D	w) Operation of oil heaters	A	A	A
j) Lubricator oil level and drip rate	NA	NA	D	x) Operation of unloader	М	М	М
k) Jacket cooling oil level	NA	NA	D	 y) Visually inspect alignment of compressor-motor drive shaft 	A	A	A
I) Determine shaft seal leak rate	WA-W	WA-W	WA-W	Testing	Screw	Recip	Rotary Vane
m) Indicator of Compressor Capacity	D	WA-D	WA-D	Test safety shutdowns:			
n) Motor amperage (current)	D	WA-D	WA-D	a) Low suction pressure cutout	А	А	А
o) Recorded Alarms and Shutdowns	D	WA-D	WA-D	b) High discharge pressure cutout	A	A	А
p) Free from abnormal sounds and excessive vibration	D	D	D	(HPCO) See Section 6.1.1			

Record compressor runtime (hours)

Record compressor suction pressure

Record compressor discharge pressure

Micro III

192.5 Psi

193.7 Psi

165.2 °F

120.9 °F

174.6 °F

1.2 Psi

DAILY **INSPECTIONS**

Record compressor oil pressure

Inlet Oil Press	192.5	Ps
Oil Filter Diff	1.2	Ps
Oil Filter Inlet	193.7	Pe
Oil Separator TP	165.2	٩F
Inlet Oil Temp	120.9	۴F
Dischar9e Temp	174.6	٩F
Suction Temp	5.7	PF
Manufacture of the second		
COMPRESSOR C	ONTRO	C

Record compressor oil temperature

Record compressor discharge temperature

Normal New Event - Control : Suction Press	ure		10.20	ESSOR 1 .30.21 6 08:27:41	H	lome	Alarms Login	
Setpoint : 5.0 PSIG - Ac	tual : 5.3 PSR	3						
Package Operating	/alues			Capacity Manag	ement			
Package Operading	Pressure	Temperature	Superheat	Capacity	Control		Setpoint	
Suction	5.3 PSIG	-7.6 °F	9.5 °F					
Discharge	128.3 PSIG	185.3 °F	109.4 °F		Actua	5.3 PSIC	;	
Oil	145.9 PSIG	130.4 °F			Actua			
Separator		166.4 °F		Compressor				
Filter Differential	2.9 PSI			Compressor	Running			
Motor Amps	597 AMPS	Motor Recycle Delay	00:00		Idle	99.9 %		
Motor % FLA		Motor Run Hours	248 HRS	Capacity Slide	idie			
Motor Kilowatts Est.	438 kW		444	Volume Slide	Idie	4,48		
					k		Volume	
System Operation	g Values		Select Data	Compressor		Capacity	Volume	

Record compressor oil filter differential pressure

Record compressor motor amperage

Micro III

CH, DIS

CLE

DAILY INSPECTIONS

Record compressor alarms and shutdowns

Inlet Oil Press	192.5	Psi
Oil Filter Diff	1.2	Psi
Oil Filter Inlet	193.7	Psi
Oil Separator TP	165.2	۳F
Inlet Oil Temp	120.9	۳F
Dischar9e Temp	174.6	٩F
Suction Temp	5.7	I°F

COMPRESSOR CONTROL

Verify oil levels are adequate

Check for oil leaks

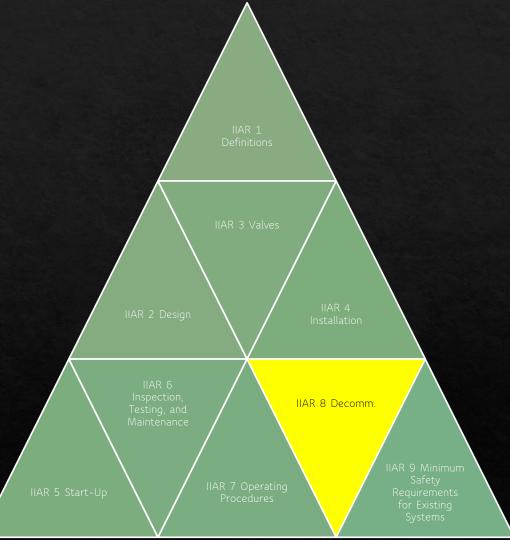
Check lubricator oil level and drip rate

Check compressor for unusual vibration

Type of Record	Retention Duration
Daily Inspection Records	Most current 12 months
Daily Testing Records	Most current 12 months
Daily Maintenance Records	Most current 12 months
Annual Inspection Records	Most current 5 years
Annual Testing Records	Most current 5 years
Annual Maintenance Records	Most current 5 years
Five Year Inspection Records	Two (2) most current
Five Year Testing Records	Two (2) most current
Five Year Maintenance Records	Two (2) most current
Ten Year Maintenance Records	Two (2) most current

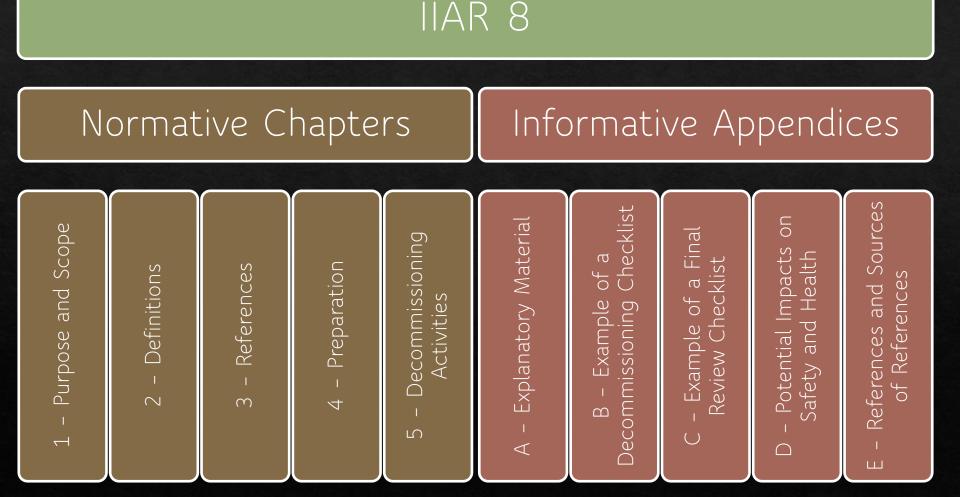
Type of Record	Retention Duration
Engineering Design Documentation	Life of the process
Pressure Vessel U-1, U-1A, U-3, UM Reports	Equipment life
Log (Operator Transfer of Information)	Most current 12 months
Secondary Coolant Records	Most current 12 months
Ammonia Refrigerant Records	Most current 5 years
Refrigeration Oil Records	Most current 5 years
Lubrication Records	Most current 5 years
Pressure Relief Valve (PRV) Records	PRV life
Current System Records listed in Section 5.3.3	Life of the process
Instrument and Device Testing and Calibration	Most current 5 years

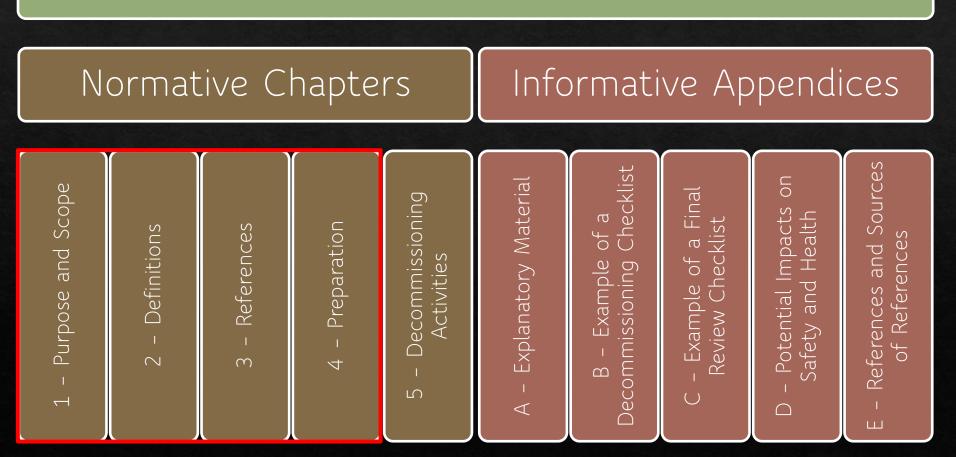
Type of Record	Retention Duration
Engineering Design Documentation	Life of the process
Pressure Vessel U-1, U-1A, U-3, UM Reports	Equipment life
Log (Operator Transfer of Information)	Most current 12 months
Secondary Coolant Records	Most current 12 months
Ammonia Refrigerant Records	Most current 5 years
Refrigeration Oil Records	Most current 5 years
Lubrication Records	Most current 5 years
Pressure Relief Valve (PRV) Records	PRV life
Current System Records listed in Section 5.3.3	Life of the process
Instrument and Device Testing and Calibration	Most current 5 years



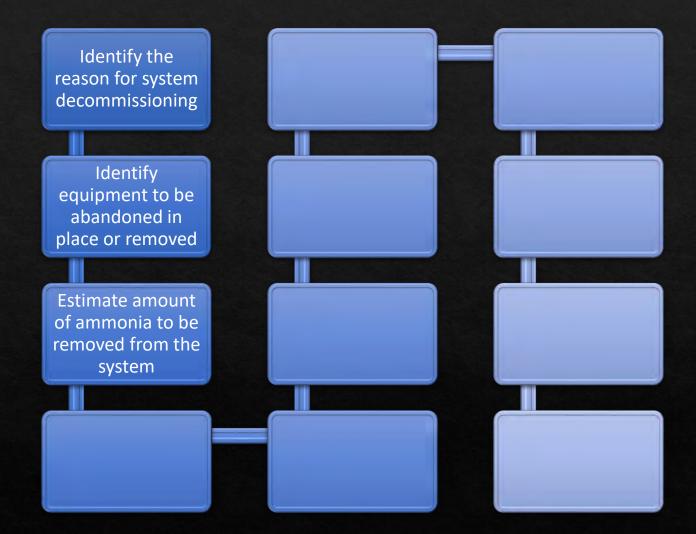
ANSI/IIAR 8-2020

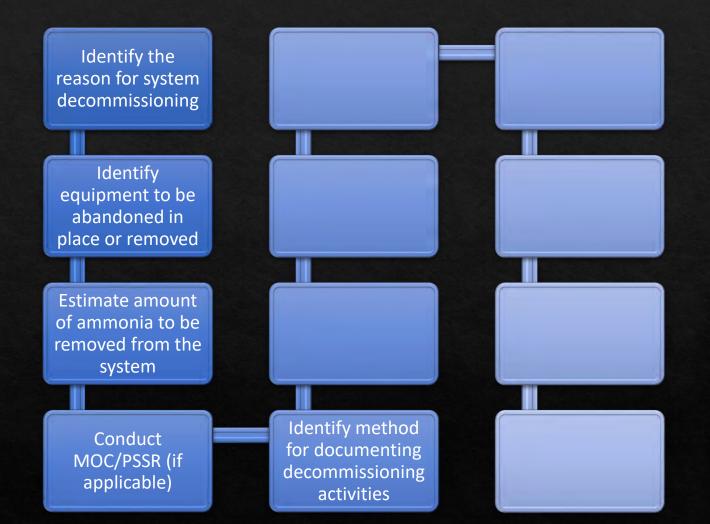
Decommissioning of Closed-Circuit Ammonia Refrigeration Systems

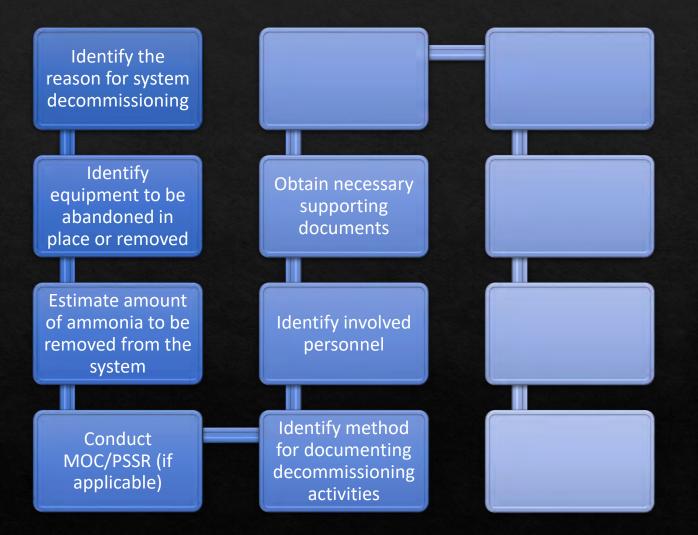

Overview and Chapters 1-4


Standard 8

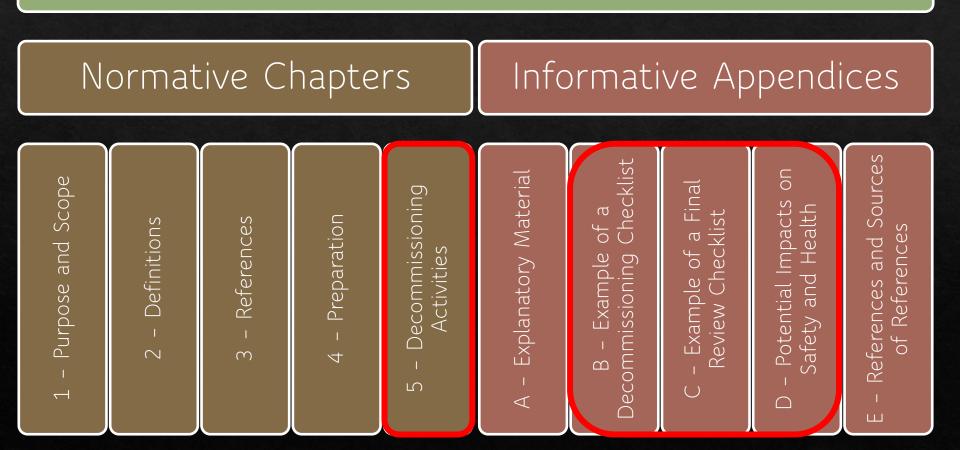
Publication History




IIAR 8


1.1 – Purpose

This standard specifies the minimum requirements for the safe decommissioning of closed-circuit ammonia refrigeration systems.



Evaluate and document **Develop SOPs to** Identify the reason for the potential impacts on following for system decommissioning safety and health decommissioning Identify equipment to be tasks performed on **Obtain necessary** abandoned in place or supporting documents applicable safety systems removed and transfer equipment Estimate amount of Identify involved ammonia to be removed personnel from the system Identify method for Conduct MOC/PSSR (if documenting applicable) decommissioning activities

Evaluate and document **Develop SOPs to** Identify the reason for the potential impacts on following for system decommissioning safety and health decommissioning Review the previous ITM Identify equipment to be tasks performed on **Obtain necessary** abandoned in place or supporting documents applicable safety systems removed and transfer equipment Perform training on the Estimate amount of Identify involved ammonia to be removed personnel maintain records of the from the system Identify method for Conduct MOC/PSSR (if documenting overview of the applicable) decommissioning activities activities.

IIAR 8

Chapter 5: Decommissioning Activities

♦ § 5.1 Final Review

- ♦ § 5.2 Conduct Decommissioning Activities
- ♦ § 5.3 Follow-Up Activities

5.1 – Final Review

Conduct a final review prior to the start of the decommissioning activities to ensure that the requirements in Chapter 4 have been addressed.

 Informative checklist in Appendix C

Decommissioning Checklist									
Final Review	Person Responsible	Date Comp							
Final Review Person Responsible Date Completed									
Has the purpose of the decommission been identified?									
Has the equipment that will be decommissioned been identified?									
Has the amount of ammonia that will be removed been estimated?									
Have the regulatory requirements been identified?									
Have the steps taken during decommissioning activities been documented?									
Have the personnel involved in decommissioning activities been identified?									
Have the supporting documents been obtained?									
Have the impacts on safety and health been evaluated and documented?									
Have the operating procedures been documented?									
Have the inspections, tests and maintenance been completed?									
Has the training been conducted and documented									
Have response personnel been provided with an overview of the decommissioning ivities?									
Have response personnel been provided with an overview of the decommissioning Under?									

Appendix B: Example of a Decommissioning Checklist

Decommissioning Checklist

Facility Information						
Date of Decommissioning:						
Facility Name:						
Location:						
Description of Decommissioning Activities:						

Decommissioning Checklist									
Preparation	Comments	Action Items	Person Responsible	Date Completed					
What is the purpose of the decommissioning?									
What equipment will be decommissioned?									
How much ammonia will be removed?									
What regulatory requirements must be met?									
What method(s) will be used to document the decommissioning activities?									
How long will the documentation be retained?									

Example Checklist Items

♦ Who will coordinate the decommissioning activities?

♦ What system diagrams are available?

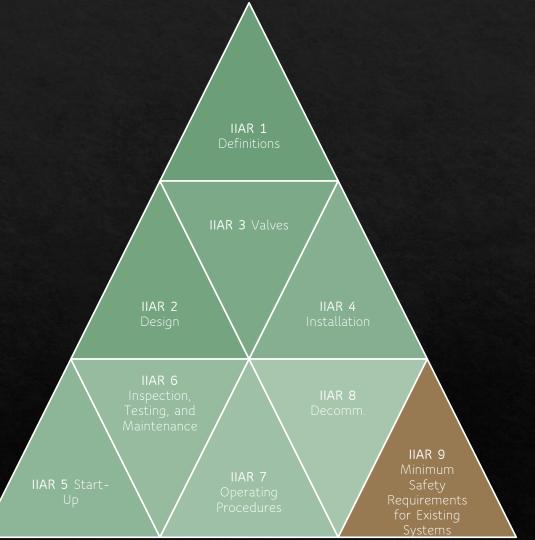
♦ How will the impacts on safety and health be evaluated and documented?

♦ How will ammonia releases be detected?

Appendix C: Example of a Final Review Checklist

Final Review Checklist

Facility Information							
Date of Decommissioning:							
Facility Name:							
Location:							
Description of Decommissioning Activities:							


Decommissioning Checklist								
Final Review	Person Responsible	Date Comp						
Final Review Person Responsible Date Completed								
Has the purpose of the decommission been identified?								
Has the equipment that will be decommissioned been identified?								
Has the amount of ammonia that will be removed been estimated?								
Have the regulatory requirements been identified?								
Have the steps taken during decommissioning activities been documented?								

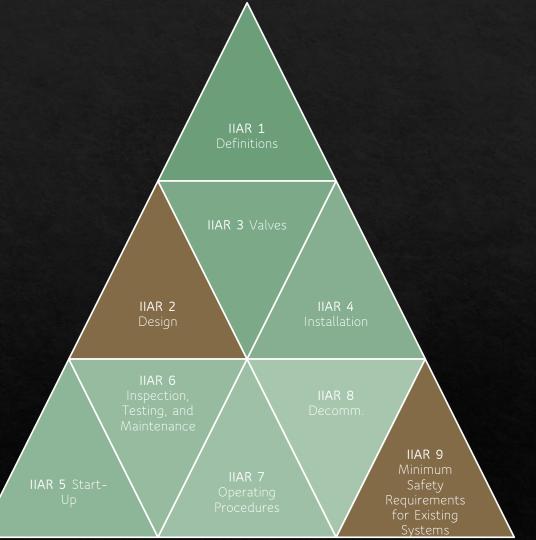
Example Checklist Items

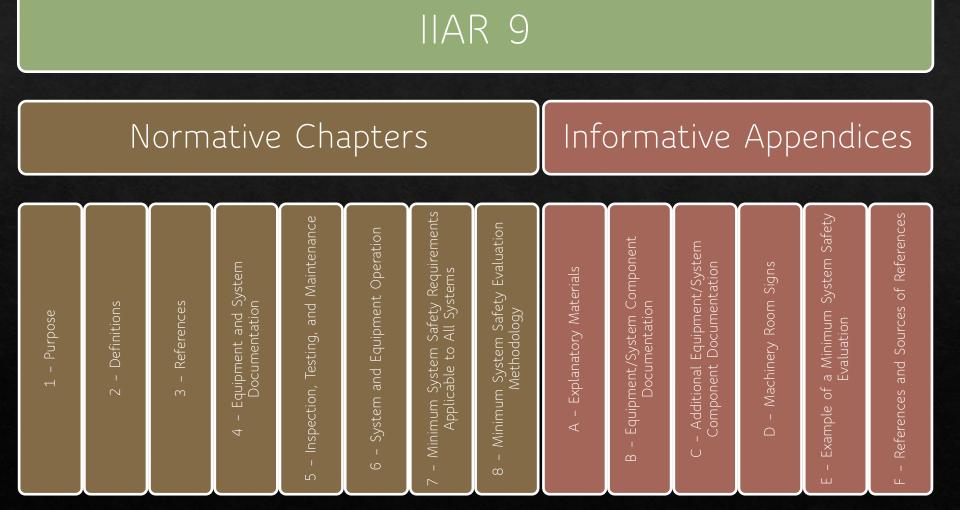
Has the amount of ammonia that will be removed been estimated?
Have the regulatory requirements been identified?
Have the operating procedures been documented?
Has the training been conducted and documented?

Standard 9

IIAR 2 was not written to force existing systems into extensive upgrades

ANSI/IIAR 2-2014 Addendum A **§**5.5.3(1)

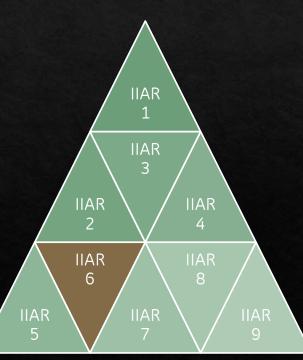

I. Low-pressure side: 10°F (5.6°C) higher than the 1% ambient dry-bulb temperature for the installation location or 114.6°F (45.9°C), whichever is greater. <u>The minimum design pressure</u> <u>shall be 250 psig</u> (1,724 kPa).


> IIAR 2 was not written to force existing systems into extensive upgrades

Existing systems have risks that could impact employees and the community at large

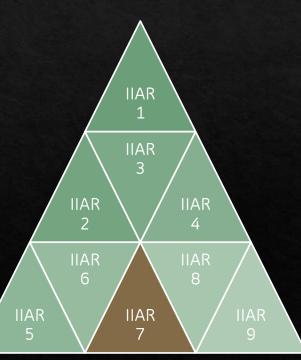
IIAR 2 was not written to force existing systems into extensive upgrades

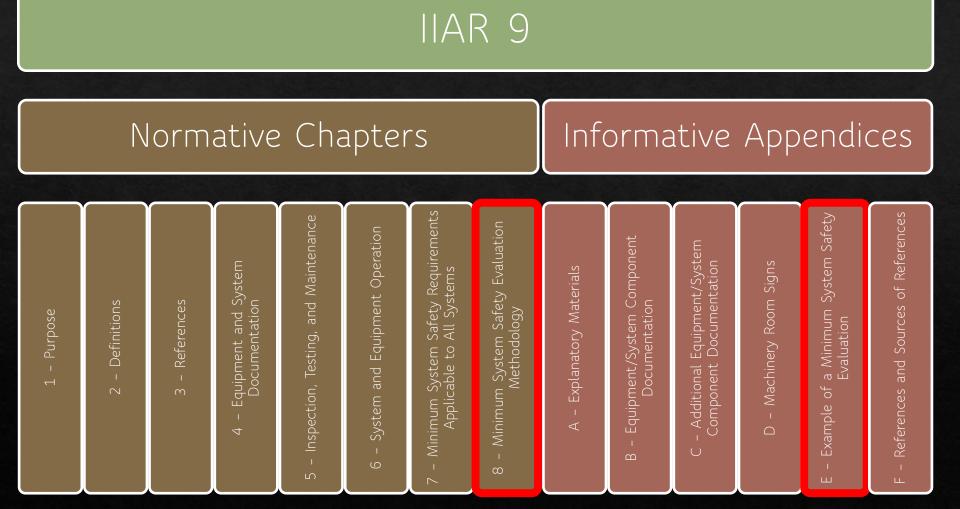
Standard 9



Chapter 1: Purpose

- ♦ §1.1 Purpose
 - ♦ §1.1.1 This standard provides the minimum safety requirements for existing closed-circuit ammonia refrigeration systems.


Chapter 5: Inspection, Testing, and Maintenance


♦ §5.1 All equipment and system components shall be inspected, tested, and maintained in accordance with ANSI/IIAR 6 (2019).

Chapter 6: System and Equipment Operation

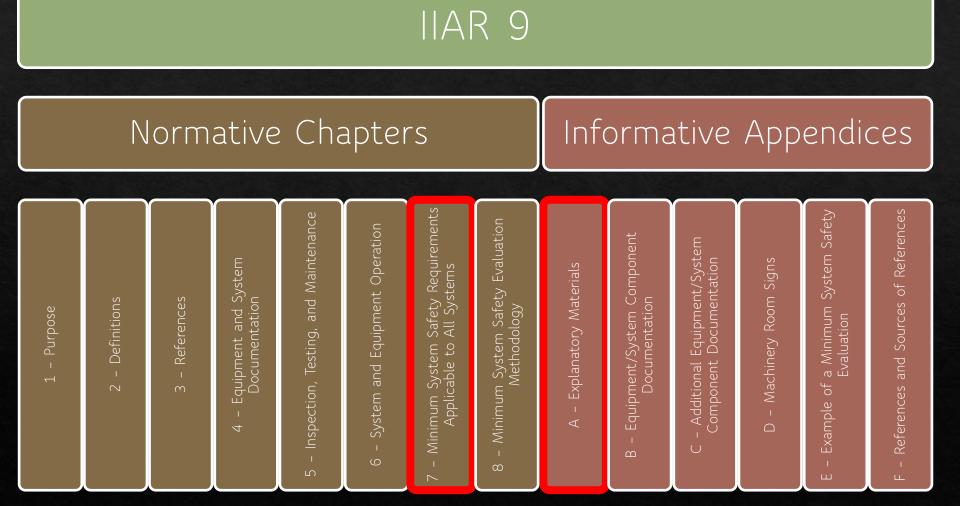
 §6.1 Operating procedures shall be developed in accordance with the requirements of ANSI/IIAR 7 (2019).

Chapter 8: Minimum System Safety Evaluation Methodology

§8.1 General Minimum System Safety Evaluation Requirements

§8.2 Minimum System Safety Evaluation Methodology

§8.3 Minimum System Safety Evaluation Frequency


MSSE Frequency

- Initial evaluation is required within five years of the date of publication (~March 18, 2020)
- Evaluations must be revalidated at least every five years

Appendix E	

	Table E.1				
BSR/IIAR 9-2019 Detection System Requirements	Existing Machinery Room Ammonia Detection System	Gaps Identified	Method Used to Address Gaps		
7.3.12.1 (1): At least one ammonia detector shall be provided in the room or area.	The machinery room contains two ammonia detectors.	None	N/A		
7.3.12.1 (2): The detector shall activate an alarm that reports to a monitored location so that corrective action can be taken.	The machinery room ammonia detectors activate alarms at 25 ppm on the facility call-down system.	None	N/A		
7.3.12.1 (3) (Part 1): Audible and visual alarms shall be provided inside the room for alarm response.	Audible and visual alarms are provided inside the machinery room.	None	N/A		
7.3.12.1 (3) (Part 2): Additional audible and visual alarms shall be located outside of each entrance to the machinery room for alarm response.	An audible and visual alarm has been provided outside the main entrance to the machinery room.	There is no audible and visual alarm outside the secondary entrance to the machinery room.	Install an audible and visual alarm outside the secondary entrance to the machinery room. This action item will be tracked in the facility's PSM on-line tracking system.		

Chapter 8: Minimum System Safety Evaluation Methodology

§7.1 Location of Ammonia Refrigeration Equipment

§7.2 General System Safety Requirements

§7.3 General Machinery Room Requirements

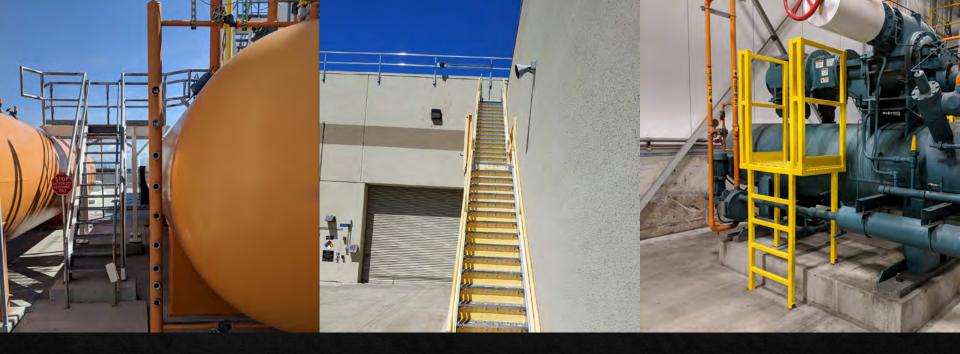
§7.4 General Equipment Safety Requirements

Location of Ammonia Refrigeration Equipment

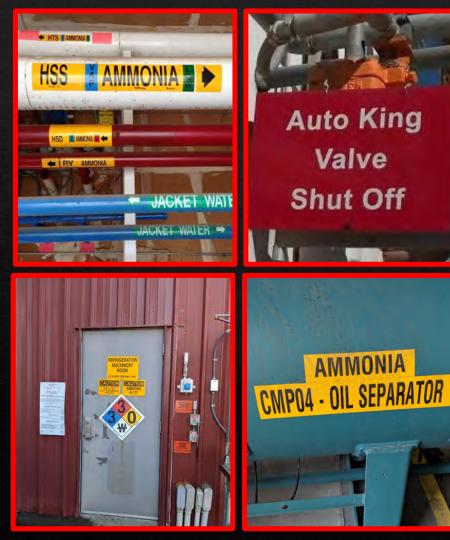
- ♦ Permissible Locations
 - ♦ Machinery Rooms
 - ♦ Outdoors
 - Select equipment can be installed indoors, in the areas other than machinery rooms:
 - ♦ Evaporators
 - ♦ Condensers
 - ♦ Low-probability pumps
 - ♦ Valves
 - Any system or portion thereof with total connected drive power not exceeding 100 HP

Minimum System Pressure Ratings

Area of System	Design Pressure
Low-pressure side	150 psig
High-pressure side (water-cooled)	250 psig
High-pressure side (evaporative-cooled)	250 psig
High-pressure side (air-cooled)	300 psig



System Temperature


	(opec. no., grade)									(Spec. no., grade)				
		Location (Top, Bottom, Ends) Minimum Thickness Corrosion Allowance Crown Radius ENDS 0.563 None N/A			Charles and the second s	in Radius	Knuckle Radius	Elliptical Ratio	Conical Apex Angle	Hemispherical Radius	I Flat Diameter	Side to Pressu Conc	ure (Convex or cave)	
(a)	END			N/A N/A 2:1 N		N/A	N/A	N/A	N/A CONCA					
	2 81						Body Flanges o	n Heads						
Bolting							ng							
	Location	Туре	ID	OD	Flange Thk	hk Min Hub Thk	Material	How Att	tached N	Num & Size B	Bolting Material	Washer (OD, ID, thk)	Washer Materia	
(a)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1	N/A	N/A	N/A	
9.1	MAWP	25/	0 psi			FV	at	max. temp.		250 °F		250 °F		
100	2		ternal)		(F	External)		All and a second second		(Internal)		(External)		
N	Min. design r	metal temp	o20 °	F	at	250/FV		Hydro, pne	eu., or comb	. test pressure	e H	YDRO at 3	25 psi	
	Proof test	-						NUA						
	roontest							N/A						

Oil Management

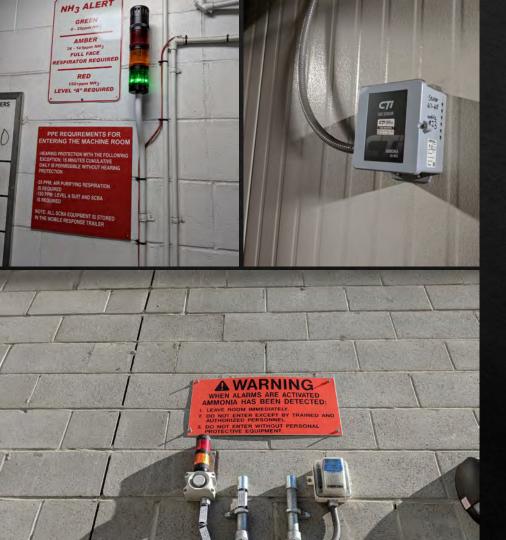
Service Provisions

Signage, Labels, Pipe Marking, and Wind Indicators

Access and Egress

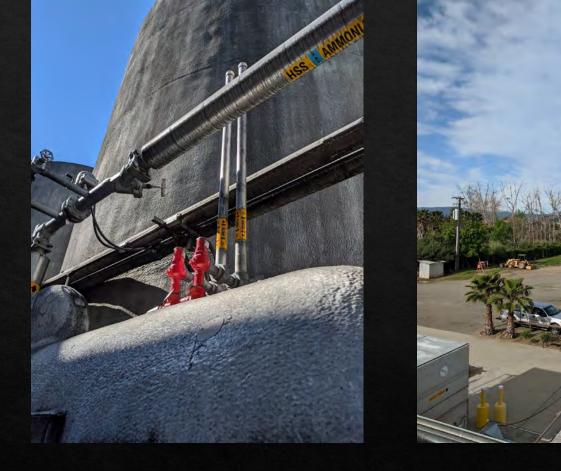
Access to Valves


Restricted Access


Combustible Materials

Pipe Marking

Eyewash and Safety Shower


Ammonia Detection and Alarms

Ventilation

Pressure Relief Protection

Atmospheric Discharge

High Liquid Level Shutdown

Ammonia Monitoring During a Power Failure

Any Questions?

Peter Thomas, P.E. Resource Compliance <u>pthomas@resourcecompliance.com</u>

559.994.0162

