
Closing Chlorinated Solvent Sites A Regulatory Perspective in the San Francisco Bay Region

Alec Naugle California Water Quality Control Board San Francisco Bay Region <u>alec.naugle@waterboards.ca.gov</u> 25 February 2019

21st Annual California CUPA Training Conference February 25-28, 2019 Anaheim

A Geologist's Perspective

A geologist is someone who learns a little bit about many things. He continues to learn less and less about more and more until, ultimately, he knows absolutely nothing about everything.

Presentation Overview

- 1. Low-Threat Assessment Tool (LTAT)
- 2. L-T case closures (SF Bay Region)
- 3. Assessing complex sites for closure
- 4. Planned LTAT updates

Topic 1: L-T Assessment Tool SF Bay Region

- 2009 SF Bay Water Board guidance
- Roadmap for assessing solvent sites

SF Bay Water Board Low-Threat Assessment Tool Assessment Tool for Closure of Low-Threat Chlorinated Solvent Sites

Prepared by:

Groundwater Committee, a staff committee of the California Regional Water Quality Control Board San Francisco Bay Region

Draft Final - July 31, 2009

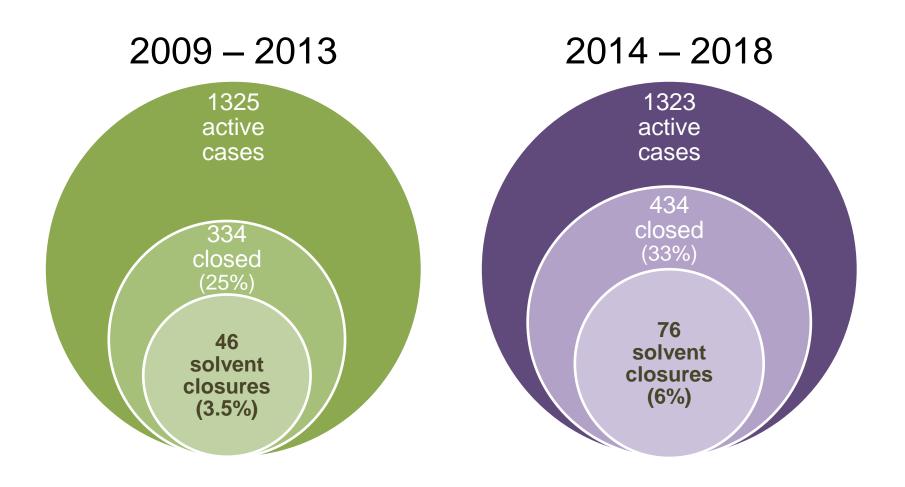
Similar to State Water Board's 2012 UST Closure Policy, but...

- More qualitative
- Relies on convincing evidence of decreasing plumes
- Considers need for long-term O&M

- 1. Complete conceptual site model
 - a) Pollutant sources adequately identified / evaluated
 - b) Site adequately characterized
 - c) All risks / threats / concerns identified
- 2. Risks / threats mitigated
 - a) Pollutant sources remediated to extent feasible
 - b) Risks to human and ecological health mitigated
 - c) Threats to water resources mitigated
- 3. Residual contamination adequately addressed
 - a) Groundwater plume is decreasing
 - b) Cleanup standards to be met in reasonable timeframe
 - c) Risk management measures are self-implementing

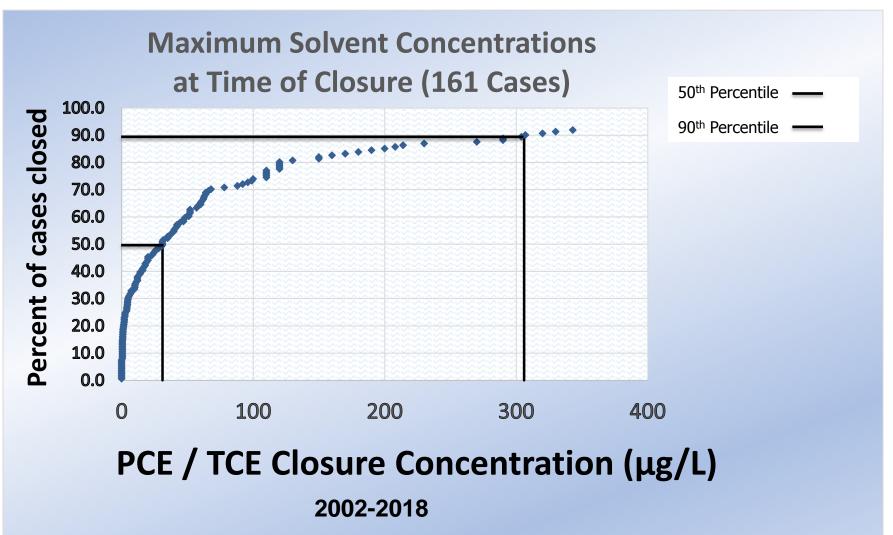
- 1. Complete conceptual site model
 - a) Pollutant sources adequately identified / evaluated
 - b) Site adequately characterized
 - c) All risks / threats / concerns identified
- 2. Risks / threats mitigated
 - a) Pollutant sources remediated to extent feasible
 - b) Risks to human and ecological health mitigated
 - c) Threats to water resources mitigated
- 3. Residual contamination adequately addressed
 - a) Groundwater plume is decreasing
 - b) Cleanup standards to be met in reasonable timeframe
 - c) Risk management measures are self-implementing

- 1. Complete conceptual site model
 - a) Pollutant sources adequately identified / evaluated
 - b) Site adequately characterized
 - c) All risks / threats / concerns identified
- 2. Risks / threats mitigated
 - a) Pollutant sources remediated to extent feasible
 - b) Risks to human and ecological health mitigated
 - c) Threats to water resources mitigated
- 3. Residual contamination adequately addressed
 - a) Groundwater plume is decreasing
 - b) Cleanup standards to be met in reasonable timeframe
 - c) Risk management measures are self-implementing

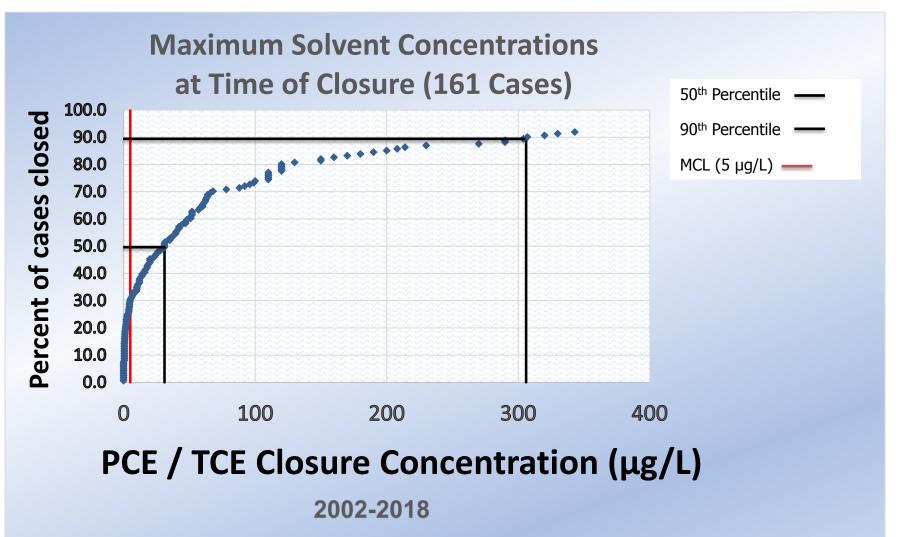

- 1. Complete conceptual site model
 - a) Pollutant sources adequately identified / evaluated
 - b) Site adequately characterized
 - c) All risks / threats / concerns identified
- 2. Risks / threats mitigated
 - a) Pollutant sources remediated to extent feasible
 - b) Risks to human and ecological health mitigated
 - c) Threats to water resources mitigated
- 3. Residual contamination adequately addressed
 - a) Groundwater plume is decreasing
 - b) Cleanup standards to be met in reasonable timeframe
 - c) Risk management measures are self-implementing

Topic 2: L-T Case Closures SF Bay Region

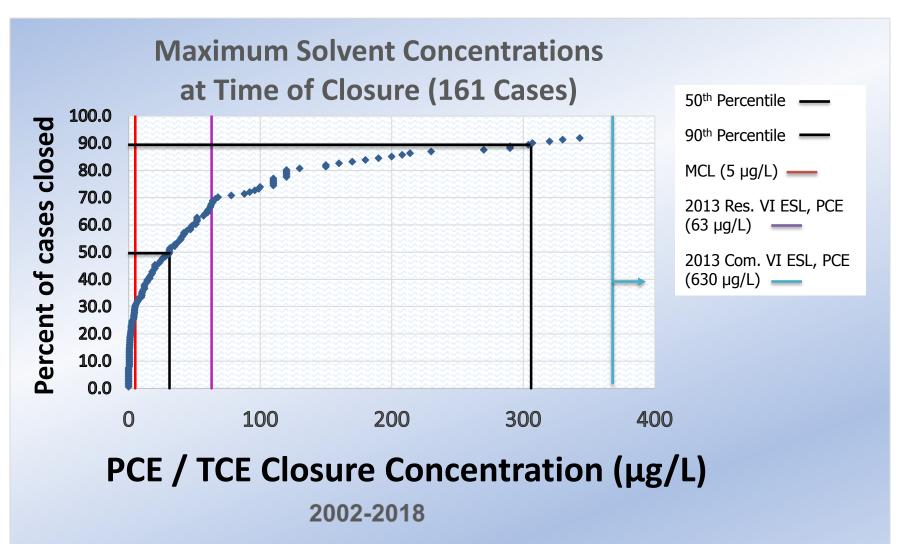
- Low-threat case closures, 2009-2018 (non-petroleum sites)
- Lessons learned

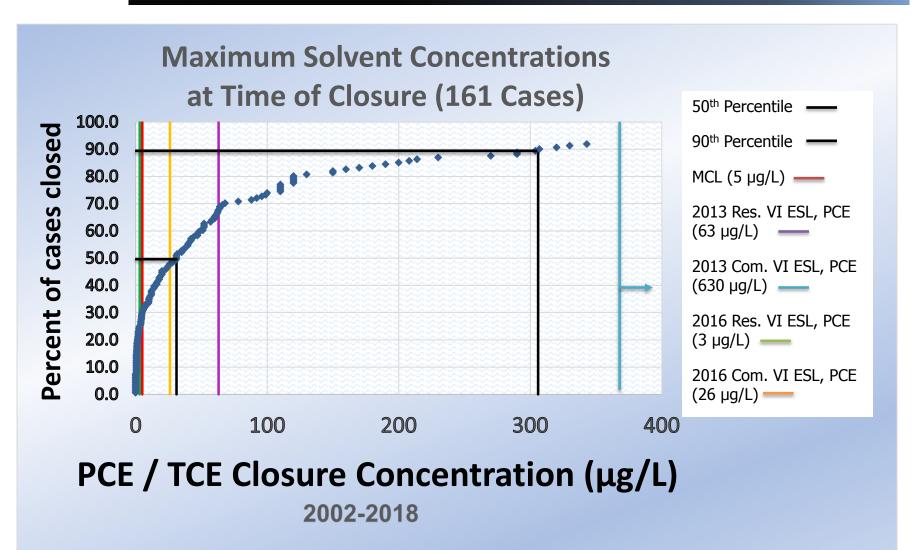


Environmental Screening Levels


- Drinking water standard = 5 ug/L (TCE, PCE)
- Groundwater ESLs for vapor intrusion concerns have changed:

ESLs for VI concerns		CE g/L)		ĊE g/L)
	Res	Com	Res	Com
2013	63	630	130	1300
2016	3	26	5.6	49
2019	0.64	2.8	1.2	7.5





Maximum Initial Concentrations L-T Closures, 2009-2018

PCE / TCE (ug/L)	Order of magnitude above MCL	Number of Closures
<100	1-2	41
100 – 1,000	2-3	28
1,000 – 10,000	3-4	32

Remediation Methods L-T Closures, 2009-2018

Remediation Methods	Number of Sites
Excavation	48
MNA/No Remediation	34
Groundwater extraction	17
In-Situ (ISB, ISCO, ISCR)	9

Order of Magnitude Reduction to reach MCL	0-1	1-2	2-3	3-4	>4
Excavation/Source Removal	16	11	3	4	2
Groundwater Extraction	4	2	1	2	2
Bioremediation	0	3	2	0	0
Chemical Oxidation	0	1	0	1	0
MNA / No Remediation	19	2	0	0	0
Thermal	0	0	0	0	0

Order of Magnitude Reduction to reach MCL	0-1	1-2	2-3	3-4	>4
Excavation/Source Removal	16	11	3	4	2
Groundwater Extraction	4	2	1	2	2
Bioremediation	0	3	2	0	0
Chemical Oxidation	0	1	0	1	0
MNA / No Remediation	(19)	2	0	0	0
Thermal	0	0	0	0	0

Order of Magnitude Reduction to reach MCL	0-1	1-2	2-3	3-4	>4
Excavation/Source Removal	16	11	3	4	2
Groundwater Extraction	4	2	1	2	2
Bioremediation	0	3	2	0	0
Chemical Oxidation	0	1	0	1	0
MNA / No Remediation	19	2	0	0	0
Thermal	0	0	0	0	0

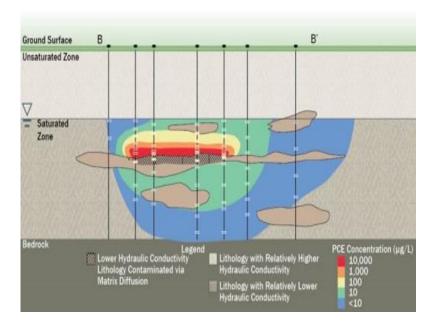
Order of Magnitude Reduction to reach MCL	0-1	1-2	2-3	3-4	>4
Excavation/Source Removal	16	11	3	4	2
Groundwater Extraction	4	2	1	2	2
Bioremediation	0	3	2	0	0
Chemical Oxidation	0	1	0	1	0
MNA / No Remediation	19	2	0	0	0
Thermal	0	0	0	0	0

Lessons Learned

- 1. L-T closures tend to be simple sites with weaker / shallow sources and no (*current*) groundwater use
- 2. Excavation, groundwater extraction, MNA remain the most common remedial methods for L-T case closures
- 3. Vapor intrusion (VI) is often a driver for additional investigation, but unclear if/how affecting closure decisions
- 4. Expect VI cases to require long-term O&M with continued oversight (closure paradox?)

Lessons Learned

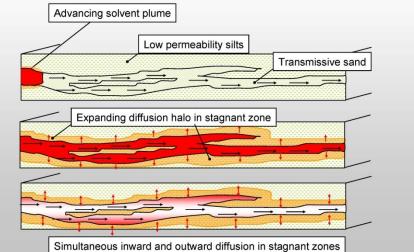
- 5. Need standardized approach(es) to demonstrating decreasing plumes (i.e., postrebound attenuation) and cleanup timeframe
- 6. Closures should clearly identify cleanup levels and land and groundwater use assumptions
- 7. LTAT is a good case management tool, even if closure is not warranted


Topic 3: Assessing Complex Sites for Closure

- Complex site characteristics
- Sources
- Plume response to remediation
- Case example
- Recommendations and conclusions

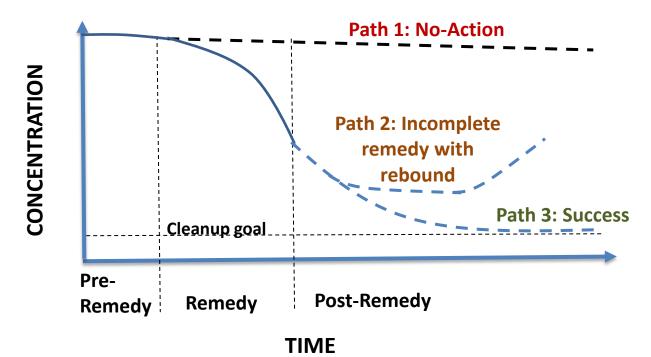
Complex Site Characteristics

- 1. Heterogeneity controls distribution
- 2. Sources are strong, deep, or diffuse
- 3. Limited response to remediation with long cleanup timeframes
- 4. Higher resolution methods needed to bridge gaps



Complex Sources

Source Identification and Control (NRC, 2005)


- A subsurface reservoir sustaining groundwater or vapor plumes
- Includes DNAPL & high concentration dissolved- and sorbedphases
- Persist long after DNAPL is gone (e.g., back diffusion)

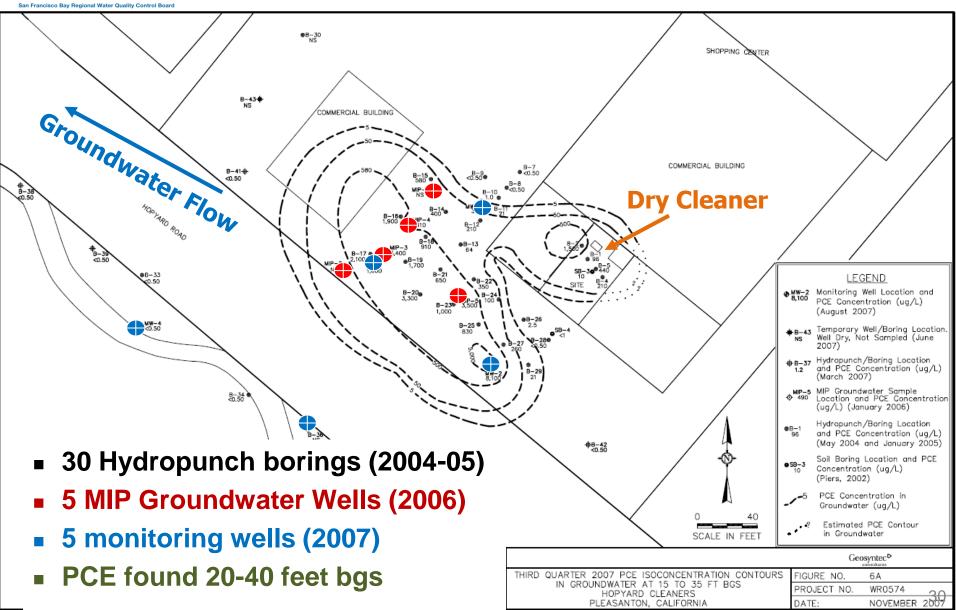
Depletion models suggest a 1 to 3 order of magnitude reduction in the near-term (5-10 yrs?) <u>may be the</u> <u>best</u> to expect for sites with diffusion-limited sources

Plume Response to Remediation

28

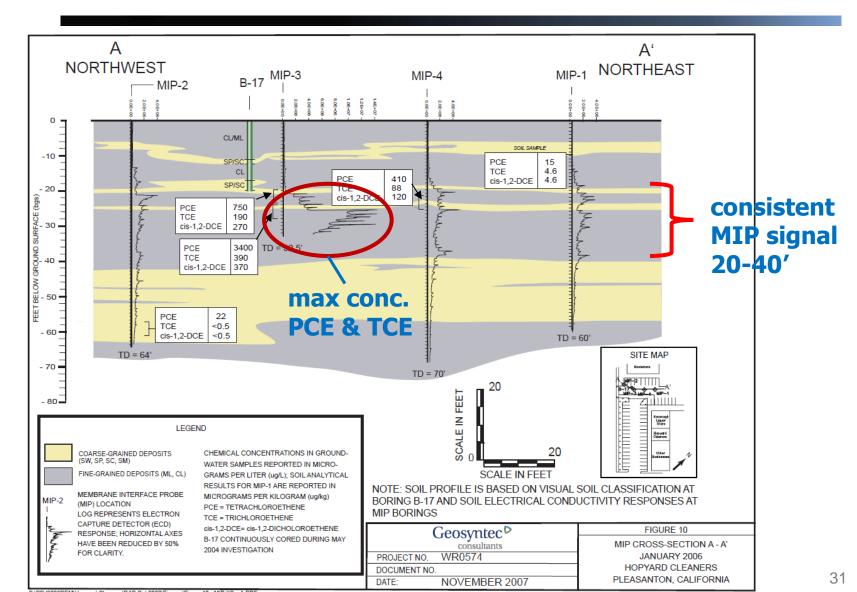
Case Example: Hopyard Cleaners

2771 Hopyard Rd


Commercial Dry Cleaner

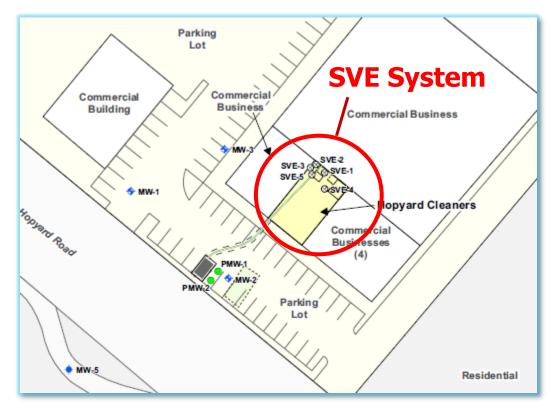
Used PCE from 1960s to 2001,

Initially investigated in 2002



Pre-Remediation Extent

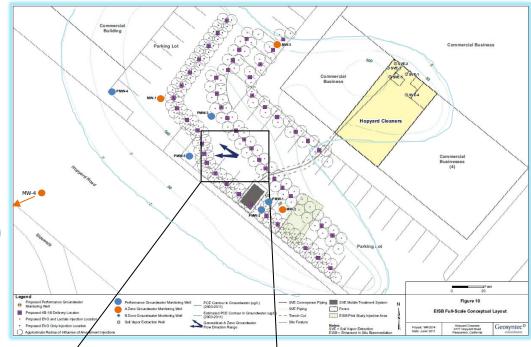
Cross Section of MIP Borings



Source Remediation

Soil Vapor Extraction (SVE)

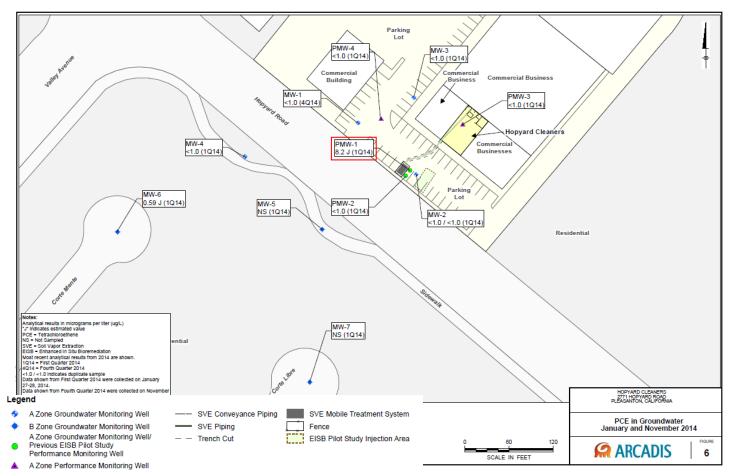
- 5 SVE wells inside drycleaner bldg (2008)
- Operated 5 years
- Removed 27
 pounds PCE



Plume Remediation

Enhanced In Situ Bioremediation (EISB)

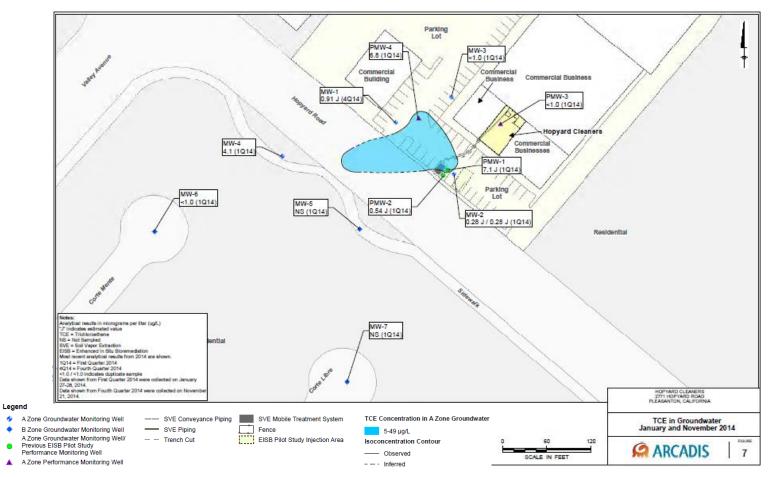
- Enhanced Reductive Dechlorination (ERD) 2010-2014
- 52 A-zone injections (20 to 30 feet bgs)
- MW concentrations reduced to trace levels.



- Performance Groundwater Monitoring Wells
- A Zone Groundwater Monitoring Wells

Effectiveness

Final PCE Groundwater Concentrations



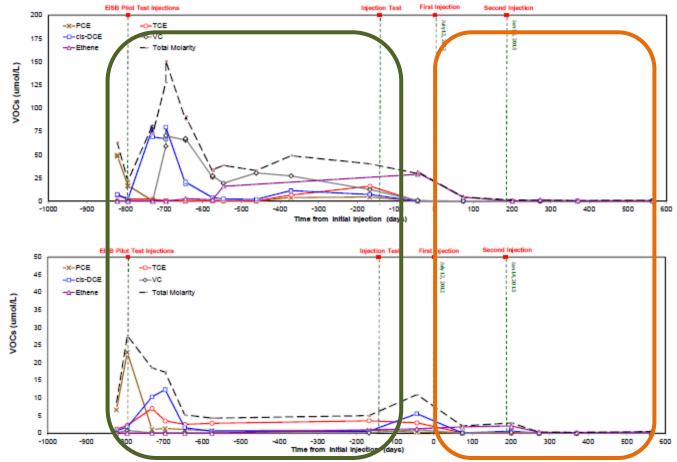
٠

Effectiveness

Final TCE Groundwater Concentrations

Effectiveness

Pre and post-remediation PCE and TCE concentrations (ug/L)


Well Name	MW- 1	MW- 2	MW -3	MW -4		PM W-2	PM W-3	PM W-4
PCE pre-remedy	3100	5800	93	ND	8200	3800	1.5	103
PCE post- remedy	ND	ND	ND	ND	8.2	ND	ND	ND

Well Name	MW -1	MW -2	MW -3	MW -4	PM W-1	PM W-2	PM W-3	PM W-4
TCE pre-remedy	370	370	7.2	3.5	900	290	8.7	447
TCE post-remedy	0.9	0.3	ND	4.1	7.1	0.54	ND	6.8

Effectiveness

Time-Concentration Graphs for MW-1 and MW-2

Parent-daughter trends Post-remediation rebound

Recommendations for Complex Sites

- Pre-characterize to match heterogeneity scale
- Define contaminant distribution with matching resolution
- Optimize effectiveness monitoring
 - Consider representative volume and uncertainties
 - Measure concentration / mass reduction trends
 - Develop decision points for future optimization

Conclusions

- 1. Reducing uncertainty is critical and higher resolution methods are an effective solution
- 2. Defining the source zone in three dimensions improves remedy selection, targeting, and efficiency
- 3. Many complex sites require long-term operation, maintenance, and monitoring with ongoing regulatory oversight

Topic 4: LTAT Updates SF Bay Region

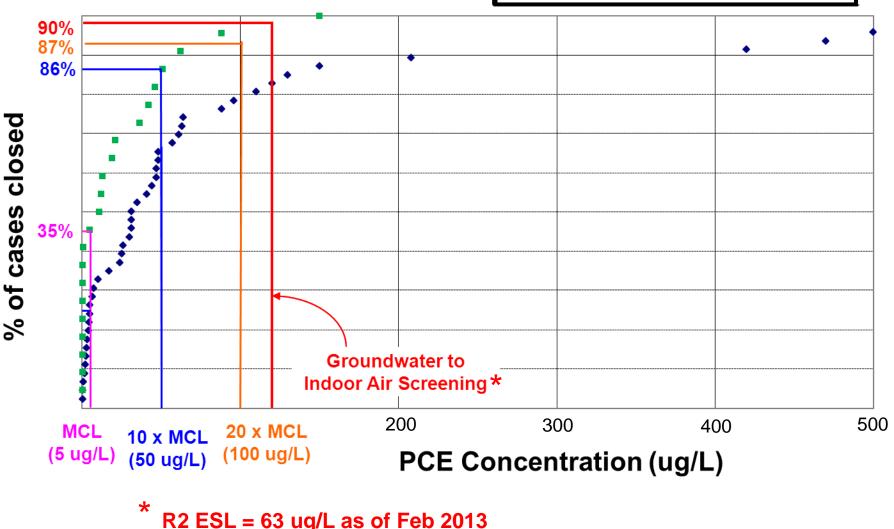
A case management path forward for all sites; not just a closure checklist applied at the end...

Planned Updates for 2019

- 1. Encourage use as a <u>case management tool</u>, not just for closure.
- 2. Broaden applicability to <u>all non-UST cleanup sites</u>, not just solvent sites.
- 3. Incorporate <u>soil vapor plume</u> characterization, spatially and temporarily, same as groundwater plumes.
- 4. Consider limits on <u>reasonable timeframes</u> based on location, risks/threats, and likelihood of future beneficial use.
- 5. Revisit self-implementing <u>risk management</u> <u>measures</u> considering the need for ongoing O&M and monitoring.

Next Steps

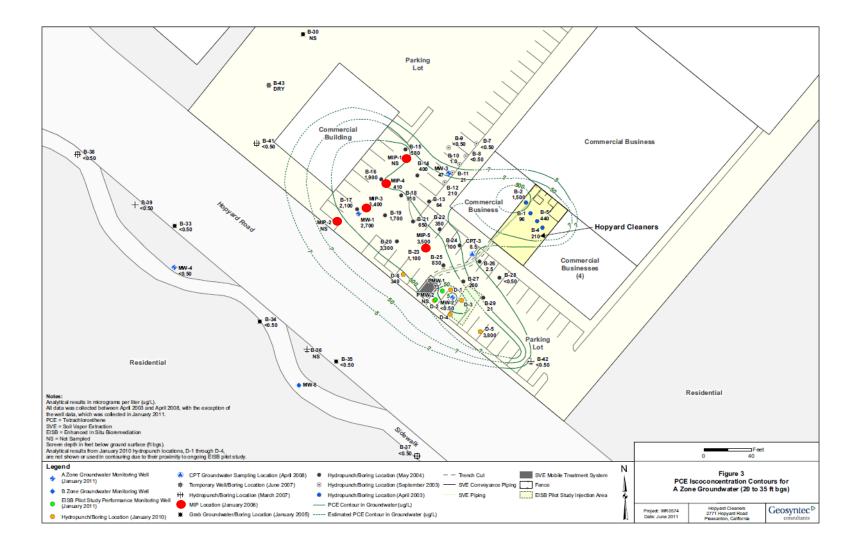
- Seek input from State and Regional Board Cleanup Programs
- Synchronize with ESL User's Guide and VI Framework Updates
- Conduct internal road-testing
- Conduct limited external peer review
- Release by fall 2019


Questions?

Maximum PCE Concentration in Groundwater at Case Closure (87 Cases Surveyed during 2002-2007 and 2008-2013

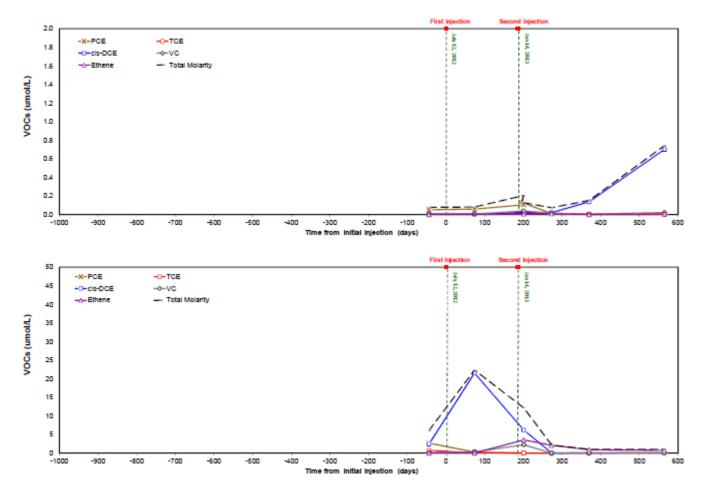
◆ Pre-LTAT (2002-2007) ■ Post-LTAT (2008-2013)

Define nature and extent, receptors, and exposure pathways (1a,b,c)


Control sources, remediate plumes, and mitigate risks (2a,b,c,)

Demonstrate decreasing plumes; reasonable timeframe; no continued regulatory oversight (3a,b,c)

https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/sitecleanup


2006 MIP Boring Locations

Effectiveness

Time-Concentration Graphs for MW-3 and MW-4

